In: Accounting
Gorman Corp. is attempting to build its cash reserves. Its CFO has determined that it can invest $35,000 at the beginning of each month in an account earning 6.42% annual interest (6.42% / 12 monthly). How long (in months) will Gorman need to follow this strategy to accumulate $3,000,000? – NOTE: This problem can be solved with the NPER() function or with GOAL SEEK.
Case 1 : | Future Value of an Annuity Due | ||||
= C*[(1+i)^n-1]/i] * (1+i) | |||||
Where, | |||||
c= Cash Flow per period | |||||
i = interest rate per period | |||||
n=number of period | |||||
= $200[ (1+0.0036083333)^60 -1 /0.0036083333] * (1 +0.0036083333) | |||||
= $200[ (1.0036083333)^60 -1 /0.0036083333] * 1.0036083333 | |||||
= $200[ (1.2412 -1 /0.0036083333] * 1.0036083333 | |||||
= $13,419.48 | |||||
Case 2 : | Future Value of an Ordinary Annuity | ||||
= C*[(1+i)^n-1]/i | |||||
Where, | |||||
C= Cash Flow per period | |||||
i = interest rate per period | |||||
n=number of period | |||||
= $50[ (1+0.05)^5 -1] /0.05 | |||||
= $50[ (1.05)^5 -1] /0.05 | |||||
= $50[ (1.2763 -1] /0.05] | |||||
= $276.28 | |||||
Case 3 : | Future Value of an Annuity Due | ||||
c= Cash Flow | 35000 | ||||
i= Interest Rate | 0.00535 | ||||
n= Number Of Periods | n | ||||
Future Value of an Annuity Due | |||||
= C*[(1+i)^n-1]/i] * (1+i) | |||||
Where, | |||||
c= Cash Flow per period | |||||
i = interest rate per period | |||||
n=number of period | |||||
3000000= $35000[ (1+0.00535)^n -1 /0.00535] * (1 +0.00535) | |||||
3000000= $35000[ (1.00535)^n -1 /0.00535] * 1.00535 | |||||
n =70.43 months | |||||
Number of months =70.43 | |||||
Number of years =5.87 |