In: Statistics and Probability
For 95% confidence level,
Zc=Z(α/2)=1.96 (from Z table)
Margin of Error = Z(α/2) √ ( ( ( 1 - ) / n) = 0.04
= 1.96 * sqrt [ 0.56 ( 1 - 0.56) / 600
= 0.040
95% confidence interval is
- E < p < + E
0.56 - 0.04 < p < 0.56 + 0.04
0.52 < p < 0.60
95% CI is ( 0.520 , 0.600)
width = 0.600- 0.520 = 0.08
For 99% confidence level,
Zc=Z(α/2)=2.576 (from Z table)
Margin of Error = Z(α/2) √ ( ( ( 1 - ) / n) = 0.04
= 2.576 * sqrt [ 0.56 ( 1 - 0.56) / 600 ]
= 0.052
99% confidence interval is
- E < p < + E
0.56 - 0.052 < p < 0.56 + 0.052
0.508 < p < 0.612
95% CI is ( 0.508 , 0.612)
width = 0.612-0.508 = 0.104
99% confidence interval is Wider.
This is because higher confidence level requires more accuracy for population proportion to
lie in confidence interval.
----------------------------------------------------------------------------------------
please upvote