In: Chemistry
A chemist titrates 80.0mL of a 0.6050M trimethylamine CH33N solution with 0.2965M HNO3 solution at 25°C . Calculate the pH at equivalence. The pKb of trimethylamine is 4.19 . Round your answer to 2 decimal places. Note for advanced students: you may assume the total volume of the solution equals the initial volume plus the volume of HNO3 solution added.
use:
pKb = -log Kb
4.19= -log Kb
Kb = 6.457*10^-5
find the volume of HNO3 used to reach equivalence point
M((CH3)3N)*V((CH3)3N) =M(HNO3)*V(HNO3)
0.605 M *80.0 mL = 0.2965M *V(HNO3)
V(HNO3) = 163.2378 mL
Given:
M(HNO3) = 0.2965 M
V(HNO3) = 163.2378 mL
M((CH3)3N) = 0.605 M
V((CH3)3N) = 80 mL
mol(HNO3) = M(HNO3) * V(HNO3)
mol(HNO3) = 0.2965 M * 163.2378 mL = 48.4 mmol
mol((CH3)3N) = M((CH3)3N) * V((CH3)3N)
mol((CH3)3N) = 0.605 M * 80 mL = 48.4 mmol
We have:
mol(HNO3) = 48.4 mmol
mol((CH3)3N) = 48.4 mmol
48.4 mmol of both will react to form (CH3)3NH+ and H2O
(CH3)3NH+ here is strong acid
(CH3)3NH+ formed = 48.4 mmol
Volume of Solution = 163.2378 + 80 = 243.2378 mL
Ka of (CH3)3NH+ = Kw/Kb = 1.0E-14/6.456542290346549E-5 = 1.549*10^-10
concentration of(CH3)3NH+,c = 48.4 mmol/243.2378 mL = 0.199 M
(CH3)3NH+ + H2O -----> (CH3)3N + H+
0.199 0 0
0.199-x x x
Ka = [H+][(CH3)3N]/[(CH3)3NH+]
Ka = x*x/(c-x)
Assuming x can be ignored as compared to c
So, above expression becomes
Ka = x*x/(c)
so, x = sqrt (Ka*c)
x = sqrt ((1.549*10^-10)*0.199) = 5.551*10^-6
since c is much greater than x, our assumption is correct
so, x = 5.551*10^-6 M
[H+] = x = 5.551*10^-6 M
use:
pH = -log [H+]
= -log (5.551*10^-6)
= 5.26
Answer: 5.26