Question

In: Physics

Place 4 charges at the corners of a square which is 2 meters by 2 meters...

Place 4 charges at the corners of a square which is 2 meters by 2 meters (4 large squares along each length). Place two +1 nC charges at adjacent corners and two -1 nC charges at the other two corners.

Determine the direction of the electric field at the following three points:
Point E halfway between two like charges. (-120 degrees, 50 V/m)
Point F halfway between two opposite charges. (-90.5 degrees, 309 V/m)
Point G at the center of the square. (90 degrees, 210 V/m)

1. For the points E, F and G, draw a diagram showing both charges and the two individual field vectors (one for each charge) and explain why their vector sum points in the direction that you.

2. Determine the electric potential at the points E, F and G. List them numerically and give an explanation for their value  

Solutions

Expert Solution


Related Solutions

4 charges are fixed to the corners of a square of side .53 cm. Charge 1...
4 charges are fixed to the corners of a square of side .53 cm. Charge 1 of -1 uC is fixed to the top left corner. Charge 2 of -2uC is fixed to the top right corner, charge 3 of 3uC is fixed to the bottom left corner , and charge 4 of -4uC is fixed to the bottom right corner. a) find the magnitude and direction of the electric field at the center of the square b) find the...
Four point charges are at the corners of a square of side a as shown in...
Four point charges are at the corners of a square of side a as shown in the figure below. Determine the magnitude and direction of the resultant electric force on q, with ke, q, and a in symbolic form. (Let B = 5.5q and C = 2.0q. Assume that the +x-axis is to the right and the +y-axis is up along the page.) magnitude = _______  direction = _______   counterclockwise from the +x-axis
Four point charges are at the corners of a square of side a as shown in...
Four point charges are at the corners of a square of side a as shown in the figure below. Determine the magnitude and direction of the resultant electric force on q, with ke, q, and a in symbolic form. (Let B=5.5q and C=8.0q. Assume that the +x-axis is to the right and the +y-axis is up along the page.) 
Consider four 60·nC charges placed at the corners of a square, which is 3.6·m on a...
Consider four 60·nC charges placed at the corners of a square, which is 3.6·m on a side. The charges on the bottom are both positive, and the charges on the top are both negative. (a) Find the electric field at the center of the square, in units of V/m. vector E = 0 i hat + 235.7 j (b)Find the electric field at the midpoint of the right side, in units of V/m. vector E = _ i hat +...
Four charges are at the corners of a square centered at the origin as follows: 7...
Four charges are at the corners of a square centered at the origin as follows: 7 q at (?4 a,+3 a) , 9 q at (+4 a,+3 a) , ?5 q at (+4 a,?3 a) , and 9 q at (?4 a,?3 a) . A fifth charge 9 q with mass m is placed at the origin and released from rest
Three charges of +Q are at the three corners of a square of side length L....
Three charges of +Q are at the three corners of a square of side length L. The last corner is occupied by a charge of -Q. Find the electric field at the center of the square.
Point charges q1=+2.00μCq1=+2.00μC and q2=−2.00μCq2=−2.00μC are placed at adjacent corners of a square for which the...
Point charges q1=+2.00μCq1=+2.00μC and q2=−2.00μCq2=−2.00μC are placed at adjacent corners of a square for which the length of each side is 4.00 cmcm. Point aaa is at the center of the square, and point b is at the empty corner closest to q2q2. Take the electric potential to be zero at a distance far from both charges. A point charge q3q3q_3 = -6.00 μCμC moves from point aaa to point bbb. How much work is done on q3q3 by the...
Three charges at the corners of a square of sides s = 3.40 m. Here, q1...
Three charges at the corners of a square of sides s = 3.40 m. Here, q1 = q2 = −q and q3 = −1.5q where q = 9.00 nC. q2 is at the top left of the square, q3 at the bottom left and q1 at the bottom right. (a) What is the magnitude of the electric field at the center of the square due to these three charges? (b) You now replace q1 in the square with another point...
Four charges of magnitude +q are placed at the corners of a square whose sides have...
Four charges of magnitude +q are placed at the corners of a square whose sides have a length d. What is the magnitude of the total force exerted by the four charges on a charge Q located a distance b along a line perpendicular to the plane of the square and equidistant from the four charges? Ans: bqQ/πε 0 (b2 + d2 / 2) how to get this answer?
Point charges of 9.00 nC are situated at each of three corners of a square whose...
Point charges of 9.00 nC are situated at each of three corners of a square whose side is 0.450 m . a. What is the magnitude of the resultant force on a point charge of -4.00 μC if it is placed at the center of the square? b. What is the magnitude of the resultant force on a point charge of -4.00 μC if it is placed at the vacant corner of the square?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT