Question

In: Physics

In a RLC circuit of 60 ohm resistor, a 0.1 H inductor, and a 30 microfarad...

In a RLC circuit of 60 ohm resistor, a 0.1 H inductor, and a 30 microfarad capacitor. it is attached to a 120/60 Hz household power line.
calculate:
a) peak current
b) the phase angle
c) the average power loss
d) resonance frequency
e) maximum possible current?

Solutions

Expert Solution

the inductive reactance is

the capacitive reactance

then impedance is

(a)

peak current is

(b)

phase angle is

(c)

\

(d)

resonance frequency when

(e)

maximum current at resonance is


Related Solutions

An LRC series circuit consists of a 3.15 H inductor, a 6.36 ohm resistor, and a...
An LRC series circuit consists of a 3.15 H inductor, a 6.36 ohm resistor, and a 5.48 microFarand capacitor. The combination is connected to an AC votage source that has a peak voltage of 147 V and an angular frequency of 441 rad/s. What is the peak voltage measured across the inductor?
An RLC series circuit has a 60 Ω resistor, a 3.5 mH inductor, and a 6...
An RLC series circuit has a 60 Ω resistor, a 3.5 mH inductor, and a 6 μF capacitor. Find the circuit’s impedance at 55 Hz and 12 kHz. If the voltage source has Vrms = 110 V, what is Irms at each frequency?    
An RLC series circuit consists of a 450-Ω resistor, a 3.00-mF capacitor, and a 1.00-H inductor....
An RLC series circuit consists of a 450-Ω resistor, a 3.00-mF capacitor, and a 1.00-H inductor. The circuit is driven by a power source that oscillates at 20.0 Hz and has an ε_rms value of 90.0 V . The power source is switched on at t = 0 and at that instant the emf is at its maximum value. A) Calculate the power supplied at t = 0.0200 s. B) Calculate the power supplied at t = 0.0375 s. C)...
An RLC series circuit consists of a 450-Ω resistor, a 3.00-mF capacitor, and a 1.00-H inductor....
An RLC series circuit consists of a 450-Ω resistor, a 3.00-mF capacitor, and a 1.00-H inductor. The circuit is driven by a power source that oscillates at 20.0 Hz and has an Erms value of 30.0 V . The power source is switched on at t = 0 and at that instant the emf is at its maximum value. Part A Calculate the power supplied at t = 0.0200 s. Part B Calculate the power supplied at t = 0.0375...
A series RLC circuit consists of a 58.0 ? resistor, a 2.50 mH inductor, and a...
A series RLC circuit consists of a 58.0 ? resistor, a 2.50 mH inductor, and a 450 nF capacitor. It is connected to a 3.0 kHz oscillator with a peak voltage of 5.60 V. What is the instantaneous emf E when i = I ? What is the instantaneous emf E when i = 0A and is decreasing? What is the instantaneous emf E when i = - I ?
A series RLC circuit consists of a 56.0 ? resistor, a 3.80 mH inductor, and a...
A series RLC circuit consists of a 56.0 ? resistor, a 3.80 mH inductor, and a 400 nF capacitor. It is connected to a 3.0 kHz oscillator with a peak voltage of 4.10 V. Part A What is the instantaneous emf E when i =I? Express your answer with the appropriate units. 0V SubmitHintsMy AnswersGive UpReview Part Incorrect; Try Again; 5 attempts remaining Part B What is the instantaneous emf E when i =0A and is decreasing? Express your answer...
A resistor R = 475 Ohm and an inductor of L = 1.4 H are used...
A resistor R = 475 Ohm and an inductor of L = 1.4 H are used in and RL circuit to control the timing of some device. What time constant does this device exhibit? Question options: 2.9 ms 67 ms 39 ms 29 ms none of these Question A long wire carries a steady current of I = 5.5 A. What is the strength of the magnetic field 5.5 cm away from the wire? Question options: 5.5 x 10^-7 T...
A 10.0 v battery, a 5.00 ohm resistor, and a 10.0 H inductor are connected in...
A 10.0 v battery, a 5.00 ohm resistor, and a 10.0 H inductor are connected in series. After the current in the circuit has reached its maximum value, calculate (a) the power being supplied by the battery, (b) the power being delivered to the resistor, (c)the power being delivered to the inductor, and (d) the energy stored in the magnetic field of the inductor.
An RLC series circuit has a 1.00 kΩ resistor, a 160 mH inductor, and a 25.0...
An RLC series circuit has a 1.00 kΩ resistor, a 160 mH inductor, and a 25.0 nF capacitor. (a) Find the circuit's impedance (in Ω) at 490 Hz. 12539.57588 Ω (b) Find the circuit's impedance (in Ω) at 7.50 kHz. 6765.310603 Ω (c) If the voltage source has Vrms = 408 V, what is Irms (in mA) at each frequency? mA (at 490 Hz)   mA (at 7.50 kHz) (d) What is the resonant frequency (in kHz) of the circuit? kHz...
An RLC series circuit has a 2.50 Ω resistor, a 100 µH inductor, and an 87.5...
An RLC series circuit has a 2.50 Ω resistor, a 100 µH inductor, and an 87.5 µFcapacitor. (a) If the voltage source is Vrms = 5.60 V , what is the Irms at 120 Hz? A ( ± 0.001 A) (b) What is the phase angle of the current vs voltage at this frequency? Enter a positive number between 0 and 90 degrees ( ± 0.1 degrees) (c) What is the Irms at 5.0 kHz? A ( ± 0.01 A)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT