In: Statistics and Probability
Suppose a simple random sample of 90 students from this district is drawn. What is the probability that at least half of them have either brown or green eyes? (Use technology. Round your answer to three decimal places.)
brown eyes is 40%, green eyes is 20%.
Sample size , n = 90
Probability of an event of interest, p = brown + green = 0.4 +
0.2
=0.6
X | P(X) | |
P ( X = 45) = C (90,45) * 0.6^45 * ( 1 - 0.6)^45= | 45 | 0.0134 |
P ( X = 46) = C (90,46) * 0.6^46 * ( 1 - 0.6)^44= | 46 | 0.0196 |
P ( X = 47) = C (90,47) * 0.6^47 * ( 1 - 0.6)^43= | 47 | 0.0275 |
P ( X = 48) = C (90,48) * 0.6^48 * ( 1 - 0.6)^42= | 48 | 0.0370 |
P ( X = 49) = C (90,49) * 0.6^49 * ( 1 - 0.6)^41= | 49 | 0.0476 |
P ( X = 50) = C (90,50) * 0.6^50 * ( 1 - 0.6)^40= | 50 | 0.0585 |
P ( X = 51) = C (90,51) * 0.6^51 * ( 1 - 0.6)^39= | 51 | 0.0688 |
P ( X = 52) = C (90,52) * 0.6^52 * ( 1 - 0.6)^38= | 52 | 0.0774 |
P ( X = 53) = C (90,53) * 0.6^53 * ( 1 - 0.6)^37= | 53 | 0.0833 |
P ( X = 54) = C (90,54) * 0.6^54 * ( 1 - 0.6)^36= | 54 | 0.0856 |
P ( X = 55) = C (90,55) * 0.6^55 * ( 1 - 0.6)^35= | 55 | 0.0840 |
P ( X = 56) = C (90,56) * 0.6^56 * ( 1 - 0.6)^34= | 56 | 0.0788 |
P ( X = 57) = C (90,57) * 0.6^57 * ( 1 - 0.6)^33= | 57 | 0.0705 |
P ( X = 58) = C (90,58) * 0.6^58 * ( 1 - 0.6)^32= | 58 | 0.0602 |
P ( X = 59) = C (90,59) * 0.6^59 * ( 1 - 0.6)^31= | 59 | 0.0489 |
P ( X = 60) = C (90,60) * 0.6^60 * ( 1 - 0.6)^30= | 60 | 0.0379 |
P ( X = 61) = C (90,61) * 0.6^61 * ( 1 - 0.6)^29= | 61 | 0.0280 |
P ( X = 62) = C (90,62) * 0.6^62 * ( 1 - 0.6)^28= | 62 | 0.0196 |
P ( X = 63) = C (90,63) * 0.6^63 * ( 1 - 0.6)^27= | 63 | 0.0131 |
P ( X = 64) = C (90,64) * 0.6^64 * ( 1 - 0.6)^26= | 64 | 0.0083 |
P ( X = 65) = C (90,65) * 0.6^65 * ( 1 - 0.6)^25= | 65 | 0.0050 |
P ( X = 66) = C (90,66) * 0.6^66 * ( 1 - 0.6)^24= | 66 | 0.0028 |
P ( X = 67) = C (90,67) * 0.6^67 * ( 1 - 0.6)^23= | 67 | 0.0015 |
P ( X = 68) = C (90,68) * 0.6^68 * ( 1 - 0.6)^22= | 68 | 0.0008 |
P ( X = 69) = C (90,69) * 0.6^69 * ( 1 - 0.6)^21= | 69 | 0.0004 |
P ( X = 70) = C (90,70) * 0.6^70 * ( 1 - 0.6)^20= | 70 | 0.0002 |
P ( X = 71) = C (90,71) * 0.6^71 * ( 1 - 0.6)^19= | 71 | 0.0001 |
P ( X = 72) = C (90,72) * 0.6^72 * ( 1 - 0.6)^18= | 72 | 0.0000 |
P ( X = 73) = C (90,73) * 0.6^73 * ( 1 - 0.6)^17= | 73 | 0.0000 |
P ( X = 74) = C (90,74) * 0.6^74 * ( 1 - 0.6)^16= | 74 | 0.0000 |
P ( X = 75) = C (90,75) * 0.6^75 * ( 1 - 0.6)^15= | 75 | 0.0000 |
P ( X = 76) = C (90,76) * 0.6^76 * ( 1 - 0.6)^14= | 76 | 0.0000 |
P ( X = 77) = C (90,77) * 0.6^77 * ( 1 - 0.6)^13= | 77 | 0.0000 |
P ( X = 78) = C (90,78) * 0.6^78 * ( 1 - 0.6)^12= | 78 | 0.0000 |
P ( X = 79) = C (90,79) * 0.6^79 * ( 1 - 0.6)^11= | 79 | 0.0000 |
P ( X = 80) = C (90,80) * 0.6^80 * ( 1 - 0.6)^10= | 80 | 0.0000 |
P ( X = 81) = C (90,81) * 0.6^81 * ( 1 - 0.6)^9= | 81 | 0.0000 |
P ( X = 82) = C (90,82) * 0.6^82 * ( 1 - 0.6)^8= | 82 | 0.0000 |
P ( X = 83) = C (90,83) * 0.6^83 * ( 1 - 0.6)^7= | 83 | 0.0000 |
P ( X = 84) = C (90,84) * 0.6^84 * ( 1 - 0.6)^6= | 84 | 0.0000 |
P ( X = 85) = C (90,85) * 0.6^85 * ( 1 - 0.6)^5= | 85 | 0.0000 |
P ( X = 86) = C (90,86) * 0.6^86 * ( 1 - 0.6)^4= | 86 | 0.0000 |
P ( X = 87) = C (90,87) * 0.6^87 * ( 1 - 0.6)^3= | 87 | 0.0000 |
P ( X = 88) = C (90,88) * 0.6^88 * ( 1 - 0.6)^2= | 88 | 0.0000 |
P ( X = 89) = C (90,89) * 0.6^89 * ( 1 - 0.6)^1= | 89 | 0.0000 |
P ( X = 90) = C (90,90) * 0.6^90 * ( 1 - 0.6)^0= | 90 | 0.0000 |
Probability = 0.979
THANKS
revert back for doubt
please upvote