In: Statistics and Probability
Use technology to construct the confidence intervals for the population variance sigma squared and the population standard deviation sigma. Assume the sample is taken from a normally distributed population, C= 0.90, S^2=10.24, N= 30
The confidence interval for the population variance is:
The confidence interval for the population standard deviation is:
Solution :
Given that,
c = 0.90
s2 = 10.24
n = 30
At 90% confidence level the
is ,
= 1 - 90% = 1 - 0.90 = 0.10
/ 2 = 0.10 / 2 = 0.05
/2,df =
0.05,29 = 42.56
and
1-
/2,df =
0.95,29 = 17.71
Point estimate = s2 = 10.24
2L
=
2
/2,df
= 42.56
2R
=
21 -
/2,df = 17.71
The 90% confidence interval for
2 is,
(n - 1)s2 /
2
/2
<
2 < (n - 1)s2 /
21 -
/2
( 29 *10.24 ) / 42.56 <
2 < ( 29 * 10.24) / 17.71
6.98 <
2 < 16.77
(6.98 , 16.77)
The 90% confidence interval for
is,
s
(n-1) /
/2,df <
< s
(n-1) /
1-
/2,df
3.2
( 30 - 1 ) / 42.56 <
< 3.2
(
30 - 1 ) / 17.71
2.64 <
< 4.10
( 2.64 , 4.10)