In: Statistics and Probability
Use technology to construct the confidence intervals for the population variance sigma squared and the population standard deviation sigma. Assume the sample is taken from a normally distributed population, C= 0.90, S^2=10.24, N= 30
The confidence interval for the population variance is:
The confidence interval for the population standard deviation is:
Solution :
Given that,
c = 0.90
s2 = 10.24
n = 30
At 90% confidence level the 
 is ,
= 1 - 90% = 1 - 0.90 = 0.10
 / 2 = 0.10 / 2 = 0.05

/2,df = 
0.05,29 = 42.56
and
1-
/2,df = 
0.95,29 = 17.71
Point estimate = s2 = 10.24
2L
= 
2
/2,df
= 42.56
2R
= 
21 - 
/2,df = 17.71
The 90% confidence interval for 
2 is,
(n - 1)s2 / 
2
/2
< 
2 < (n - 1)s2 / 
21 - 
/2
( 29 *10.24 ) / 42.56 < 
2 < ( 29 * 10.24) / 17.71
6.98 < 
2 < 16.77
(6.98 , 16.77)
The 90% confidence interval for 
 is,
s 
(n-1) / 
/2,df < 
 < s 
(n-1) / 
1-
/2,df
3.2 
( 30 - 1 ) / 42.56 < 
 < 3.2
(
30 - 1 ) / 17.71
2.64 < 
 < 4.10
( 2.64 , 4.10)