In: Finance
What is the price of a six-month European call option on a stock expected to pay a dividend of $1.50 in two months when the stock price is $50, the strike price is $50, the risk-free interest rate is 5% per annum and the volatility is 30% p.a.? Show all working.
Option price= | SN(d1) - Xe-r t N(d2) | |||
d1 = | [ ln(S/X) + ( r+ v2 /2) t ]/ v t0.5 | |||
d2 = | d1 - v t0.5 | |||
Where | ||||
Current stock price= | 50 | |||
Less: present value of dividend | ||||
Dividend | 1.5 | |||
Paid in (months) | 2 | |||
Present value of dividend | -1.51 | |||
S= | Stock price adjusted | 48.49 | 48.49 | |
X= | Exercise price= | 50 | ||
r= | Risk free interest rate= | 5.00% | ||
v= | Standard devriation= | 30% | ||
t= | time to expiration (in years) = | 0.5000 | ||
d1 = | [ ln(48.4874477716888/50) + ( 0.05 + (0.3^2)/2 ) *0.5] / [0.3*0.5^ 0.5 ] | |||
d1 = | [ -0.030718 + 0.0475 ] /0.212132 | |||
d1 = | 0.079111 | |||
d2 = | 0.079111 - 0.3 * 0.5^0.5 | |||
-0.133021 | ||||
N(d1) = | N( 0.079111 ) = | 0.53153 | ||
N(d2) = | N( -0.133021 ) = | 0.44709 | ||
Option price= | 48.4874477716888*0.531527781937932-50*(e^-0.05*0.5) *0.44708832198879 | |||
3.97 |
Answer is 3.97
please rate