In: Finance
A. What is Price of a European Put option?
B. Price of a European Call option?
Spot price = $60
Strike Price = $44
Time to expiration = 6 months
Risk Free rate = 3%
Variance = 22% (use for volatility)
Show steps/formula
(A)
Given,
T=6/12
S=$60
X=$44
R=3%
Sigma^2=0.22
Sigma=route of 0.22=0.4690
D1=(ln(s/x)+(sigma^2/2+rf)*t)/Sigma*route t
Ln-Natural log
Sigma^2=Variance
Rf=Risk free rate
D1=(Ln($60/$44)+(0.22/2+0.03)*6/12)/0.4690*route of 6/12
D1=0.1363+0.07/0.3316
D1=0.622
D2=d1-sigma*route t
D2=0.622-0.4690*route of 6/12
D2=0.290
NT(d1)=Normal table value of 0.622
NT(d2)=Normal table value of 0.290
(https://www.math.arizona.edu/~rsims/ma464/standardnormaltable.pdf)
NT(0.622)=0.733026
NT(0.290)=0.61409
N(d1)=0.5+-NT(d1)
If NT(d1)&NT(d2) are +ve then add 0.5 if -ve then deduct from 0.5
N(d1)=0.5+0.733026=1.233026
N(d2)=0.5+0.61409=1.11409
N(-d1)=1-0.622=0.378
N(-d2)=1-0.290=0.71
Value of call
Spot price*N(d1)-N(d2)*Strike price * e^-trf
e^-trf=e^-6/12*3%
e^-0.015=1/1.01511=0.98511
Value of call=$60*1.233026-$44*0.98511*1.11409
=73.98156-48.2900
=25.6915
Value of put
Strike price * e^-trf*(N(-d2))-Spot price*(N(-d1))
44*0.98511*0.71-60*0.378
30.774-22.68
=8.094