In: Statistics and Probability
The mean replacement time for a random sample of 15 washing machine is 10.7 years and the standard deviation is 2.5 years. Construct 98% confidence interval for the standard deviation of the replacement of all washing machines of this type. What would be the value if the standard deviation is 2.7 years.
a.
CONFIDENCE INTERVAL FOR STANDARD DEVIATION
ci = (n-1) s^2 / ᴪ^2 right < σ^2 < (n-1) s^2 / ᴪ^2 left
where,
s = standard deviation
ᴪ^2 right = (1 - confidence level)/2
ᴪ^2 left = 1 - ᴪ^2 right
n = sample size
since alpha =0.02
ᴪ^2 right = (1 - confidence level)/2 = (1 - 0.98)/2 = 0.02/2 =
0.01
ᴪ^2 left = 1 - ᴪ^2 right = 1 - 0.01 = 0.99
the two critical values ᴪ^2 left, ᴪ^2 right at 14 df are 29.1412 ,
4.66
s.d( s )=2.5
sample size(n)=15
confidence interval for σ^2= [ 14 * 6.25/29.1412 < σ^2 < 14 *
6.25/4.66 ]
= [ 87.5/29.1412 < σ^2 < 87.5/4.6604 ]
[ 3.0026 < σ^2 < 18.7752 ]
and confidence interval for σ = sqrt(lower) < σ <
sqrt(upper)
= [ sqrt (3.0026) < σ < sqrt(18.7752), ]
= [ 1.7328 < σ < 4.333 ]
b.
CONFIDENCE INTERVAL FOR STANDARD DEVIATION
ci = (n-1) s^2 / ᴪ^2 right < σ^2 < (n-1) s^2 / ᴪ^2 left
where,
s = standard deviation
ᴪ^2 right = (1 - confidence level)/2
ᴪ^2 left = 1 - ᴪ^2 right
n = sample size
since alpha =0.02
ᴪ^2 right = (1 - confidence level)/2 = (1 - 0.98)/2 = 0.02/2 =
0.01
ᴪ^2 left = 1 - ᴪ^2 right = 1 - 0.01 = 0.99
the two critical values ᴪ^2 left, ᴪ^2 right at 14 df are 29.1412 ,
4.66
s.d( s )=2.7
sample size(n)=15
confidence interval for σ^2= [ 14 * 7.29/29.1412 < σ^2 < 14 *
7.29/4.66 ]
= [ 102.06/29.1412 < σ^2 < 102.06/4.6604 ]
[ 3.5023 < σ^2 < 21.8994 ]
and confidence interval for σ = sqrt(lower) < σ <
sqrt(upper)
= [ sqrt (3.5023) < σ < sqrt(21.8994), ]
= [ 1.8714 < σ < 4.6797 ]