Question

In: Physics

1. A 31 kg crate full of fruits is placed on an incline that is 17◦...

1. A 31 kg crate full of fruits is placed on an incline that is 17◦ below the horizontal. The crate is connected to a spring that is anchored to a vertical wall, such that the spring is parallel to the surface of the incline.

(a) If the crate was connected to the spring at equilibrium length, and then allowed to stretch the spring until the crate comes to rest, determine the spring constant. Assume that the incline is frictionless and that the change in length of the spring is 2.13 m.

(b) If there is friction between the incline and the crate, would the spring stretch more, or less than if the incline is frictionless? You must use concepts pertaining to work and energy.

2. David is running with a horizontal velocity, along level ground. While running, he encounters a 2.51 m vine of negligible mass; the vine was hanging vertically from a tall tree limb and the end of the vine is directly level with his center of mass. David decides to grab the vine and swing, because he loves experiencing uniform circular motion. At the maximum height, David takes mental note that the angle the vine makes with the vertical is 21o . Ignore any elastic properties the vine may have.

(a) At the instant David grabs the vine, he is undergoing circular motion. Identify the external force on David that is supplying the centripetal force for his motion.

(b) Determine David’s centripetal acceleration.
(c) Determine the magnitude of the external force identified above, at the beginning of the swing.

Solutions

Expert Solution


Related Solutions

A 31 kg crate full of fruits is placed on an incline that is 17◦ below...
A 31 kg crate full of fruits is placed on an incline that is 17◦ below the horizontal. The crate is connected to a spring that is anchored to a vertical wall, such that the spring is parallel to the surface of the incline. (a) If the crate was connected to the spring at equilibrium length, and then allowed to stretch the spring until the crate comes to rest, determine the spring constant. Assume that the incline is frictionless and...
Ugonna stands at the top of an incline and pushes a 100−kg crate to get it...
Ugonna stands at the top of an incline and pushes a 100−kg crate to get it started sliding down the incline. The crate slows to a halt after traveling 1.50 m along the incline. (a) If the initial speed of the crate was 1.85 m/s and the angle of inclination is 30.0°, how much energy was dissipated by friction? (b) What is the coefficient of sliding friction?
A crate of mass 10.3 kg is pulled up a rough incline with an initial speed...
A crate of mass 10.3 kg is pulled up a rough incline with an initial speed of 1.43 m/s. The pulling force is 93.0 N parallel to the incline, which makes an angle of 19.4° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 4.97 m. (a) How much work is done by the gravitational force on the crate? J (b) Determine the increase in internal energy (related to thermal energy, having the opposite...
A crate of mass 9.2 kg is pulled up a rough incline with an initial speed...
A crate of mass 9.2 kg is pulled up a rough incline with an initial speed of 1.42 m/s. The pulling force is 96N parallel to the incline, which makes an angle of 20.4 with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.02 m. A) how much work is done by the gravitational force on the crate? B) determine the increase in internal energy of the crate-incline system owing to friction? C) how...
A crate of mass 50.0 kg slides down a 60.0o incline. The crates acceleration is 4.00...
A crate of mass 50.0 kg slides down a 60.0o incline. The crates acceleration is 4.00 m/s2, and the incline is 10.0 meter long. a) What is the kinetic energy of the crate as it reaches the bottom of the incline? b) How much work is spent in overcoming friction? c) What is the magnitude of friction force that acts on the crate as it slides down the incline? An advertisement claims that a certain 1200kg car can accelerate from...
A mass of 6 kg is placed on an incline with a coefficient of static friction...
A mass of 6 kg is placed on an incline with a coefficient of static friction of 1.80 and coefficient of kinetic friction of 1.28. No additional forces are acting on it and it is raised slowly from a small angle and it begins to slide at some angle. If 10 degrees is added to this angle, and the mass started from rest from a vertical height of 28 meters, how much longer would it take to travel down the...
10 kg crate is pulled 4.9 m up a 34 degree incline by a rope angled...
10 kg crate is pulled 4.9 m up a 34 degree incline by a rope angled 16 degree above the incline. The tension in the rope is 125 N, and the crate's coefficient of kinetic friction on the incline is 0.26. How much work is done by: a. Tension? J b. Gravity? J c. Normal Force? J d. What is the increase in thermal energy of the crate and incline? J
You place a crate of mass 31.6 kg on a frictionless 3.00-meter-long incline. You release the...
You place a crate of mass 31.6 kg on a frictionless 3.00-meter-long incline. You release the crate from rest, and it begins to slide down, eventually reaching the bottom 1.34 s after you released it. What is the angle of the incline? A) 24.9 degrees B) 19.9 degrees c) 29.9 degrees D) 44.9 degrees
A mover tries to push a crate up a straight ramp that makes an incline with...
A mover tries to push a crate up a straight ramp that makes an incline with the horizontal of 40 degrees. Assume the force of the man's push is parallel to the ramp surface. The mass of the crate is 20 kg. The coefficient of static friction of the crate with the ground is 0.2 and the coefficient of kinetic friction is 0.1. a) Draw a sketch of the situation and a force diagram of the crate, labeling all forces...
When a crate with mass 23.0 kgkg is placed on a ramp that is inclined at...
When a crate with mass 23.0 kgkg is placed on a ramp that is inclined at an angle αα below the horizontal, it slides down the ramp with an acceleration of 4.9 m/s2m/s2. The ramp is not frictionless. To increase the acceleration of the crate, a downward vertical force F⃗ F→ is applied to the top of the crate. a. What must FF be in order to increase the acceleration of the crate so that it is 9.8 m/s2m/s2? b....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT