Question

In: Physics

A 0.100 mm-wide slit is illuminated with plane waves from a helium-neon laser of wavelength 0.699...

A 0.100 mm-wide slit is illuminated with plane waves from a helium-neon laser of wavelength 0.699 microns. Find the distance from the zeroth-order maximum to the first two irradiance nulls in mm when the pattern is observed on a wall Z=1.0m away.

Solutions

Expert Solution

In this question, we use concept that path difference is equal to n times wavelength.


Related Solutions

A 0.50-mm-wide slit is illuminated by light of wavelength 500 nm.
A 0.50-mm-wide slit is illuminated by light of wavelength 500 nm. What is the width of the central maximum on a screen 2.0 m behind the slit in mm?  
A 0.50-mm-wide slit is illuminated by light of wavelength 500 nm.
A 0.50-mm-wide slit is illuminated by light of wavelength 500 nm. What is the width of the central maximum on a screen 2.0 m behind the slit?
A slit 0.100 cm wide is illuminated by light of wavelength 529. nm creating a diffraction...
A slit 0.100 cm wide is illuminated by light of wavelength 529. nm creating a diffraction pattern on a screen 284. cm away. How many millimeters are between the first 4 diffraction minima on the same side of the central diffraction maximum?
Laser light of wavelength 632.8 nm falls normally on a slit that is 0.0230 mm wide....
Laser light of wavelength 632.8 nm falls normally on a slit that is 0.0230 mm wide. The transmitted light is viewed on a distant screen where the intensity at the center of the central bright fringe is 8.80 W/m2. Find the maximum number of totally dark fringes on the screen, assuming the screen is large enough to show them all.At what angle does the dark fringe that is most distant from the center occur?What is the maximum intensity of the...
Laser light of wavelength 632.8 nm falls normally on a slit that is 0.0260 mm wide....
Laser light of wavelength 632.8 nm falls normally on a slit that is 0.0260 mm wide. The transmitted light is viewed on a distant screen where the intensity at the center of the central bright fringe is 8.40 W/m^2. Part A Find the maximum number of totally dark fringes on the screen, assuming the screen is large enough to show them all. m_max =    SubmitRequest Answer Part B At what angle does the dark fringe that is most distant...
A helium neon laser emits red light of wavelength 632.8 nm, which is obtained when neon...
A helium neon laser emits red light of wavelength 632.8 nm, which is obtained when neon atoms move from level 5s to level 3p. Given is a tube that contains 0.25 moles of a helium-neon mix, of which 15% are neon atoms. Also given is that while the laser is active, around 2% of the neon atoms are located at one of the two given energy levels at any time. a) what is the difference in energy between levels 5s...
The polarization of a helium-neon laser can change with time. The light from a laser is...
The polarization of a helium-neon laser can change with time. The light from a laser is initially horizontally polarized; as the laser warms up, the light changes to be vertically polarized. Suppose the laser beam passes through a polarizer whose axis is 50 ∘ from horizontal. By what percent does the light intensity transmitted through the polarizer change as the laser warms up?
Light of wavelength 610 nm falls on a slit 0.0572 mm wide. (a) On a very...
Light of wavelength 610 nm falls on a slit 0.0572 mm wide. (a) On a very large distant screen, how many totally dark fringes (indicating complete cancellation) will there be, including both sides of the central bright spot? Solve this problem without calculating all the angles! (Hint: What is the largest that sin?can be? What does this tell you is the largest that m can be?) dark fringes (b) At what angle will the dark fringe that is most distant...
Wave Optics - Double Slit interference A helium neon laser (LaTeX: \lambda=633\:nmλ = 633 n m)...
Wave Optics - Double Slit interference A helium neon laser (LaTeX: \lambda=633\:nmλ = 633 n m) illuminates a double slit that is 2 m from a screen. The light transmitted from the slits produces an interference pattern with a 3.2 mm spacing of successive bright fringes. What is the spacing of the slits? What frequency of laser light is needed to generate a 4.0 mm spacing of successive bright fringes? How will the bright fringe spacing change if the laser...
The polarization of a helium-neon laser can change with time. The light from a 1.5 mW...
The polarization of a helium-neon laser can change with time. The light from a 1.5 mW laser is initially horizontally polarized; as the laser warms up, the light changes to be vertically polarized. Suppose the laser beam passes through a polarizer whose axis is 33 ∘ from horizontal. By what percent does the light intensity transmitted through the polarizer decrease as the laser warms up? Express your answer using two significant figures.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT