Question

In: Physics

The polarization of a helium-neon laser can change with time. The light from a laser is...

The polarization of a helium-neon laser can change with time. The light from a laser is initially horizontally polarized; as the laser warms up, the light changes to be vertically polarized. Suppose the laser beam passes through a polarizer whose axis is 50 ∘ from horizontal.

By what percent does the light intensity transmitted through the polarizer change as the laser warms up?

Solutions

Expert Solution

intensityof the polarized light passing through the polarizer = I*cos2

where is the angle between polarizer and polarization of the light.

hence initial intensityof the light passing through the polarizer I1= I*cos2500

after warms up intensity of the light passing through the polarizer I1 = I*cos2400

hencepercent change of the intensity of the light =mod( ( I*cos2500 - I*cos2400) )*100/ I*cos2500

= 100*mod(cos2*50)/cos2500

= 100*mod(cos1000)/cos2500

= 0.174*100/0.6432

= 42.8


Related Solutions

The polarization of a helium-neon laser can change with time. The light from a 1.5 mW...
The polarization of a helium-neon laser can change with time. The light from a 1.5 mW laser is initially horizontally polarized; as the laser warms up, the light changes to be vertically polarized. Suppose the laser beam passes through a polarizer whose axis is 33 ∘ from horizontal. By what percent does the light intensity transmitted through the polarizer decrease as the laser warms up? Express your answer using two significant figures.
The polarization of a helium-neon laser can change with time. The light from a 1.5 mW...
The polarization of a helium-neon laser can change with time. The light from a 1.5 mW laser is initially horizontally polarized; as the laser warms up, the light changes to be vertically polarized. Suppose the laser beam passes through a polarizer whose axis is 21 ∘ from horizontal. By what percent does the light intensity transmitted through the polarizer decrease as the laser warms up? (Iwarm-Icold)/Icold= ? %
Light at 633 nm from a helium–neon laser shines on a pair of parallel slits separated...
Light at 633 nm from a helium–neon laser shines on a pair of parallel slits separated by 1.57 ✕ 10−5 m and an interference pattern is observed on a screen 2.10 m from the plane of the slits. 1. find angle from central maximum to first bright fringe 2. at what angle from central maximum does the second dark fringe appear? 3. find the distance (in m) from the central maximum to the first bright fringe.
Light from a helium-neon laser (? = 633 nm) is used to illuminate two narrow slits....
Light from a helium-neon laser (? = 633 nm) is used to illuminate two narrow slits. The interference pattern is observed on a screen 3.3m behind the slits. Eleven bright fringes are seen, spanning a distance of 54mm . What is the spacing (in mm) between the slits?
A helium neon laser emits red light of wavelength 632.8 nm, which is obtained when neon...
A helium neon laser emits red light of wavelength 632.8 nm, which is obtained when neon atoms move from level 5s to level 3p. Given is a tube that contains 0.25 moles of a helium-neon mix, of which 15% are neon atoms. Also given is that while the laser is active, around 2% of the neon atoms are located at one of the two given energy levels at any time. a) what is the difference in energy between levels 5s...
Light from a helium-neon laser (?=633nm) is used to illuminate two narrow slits. The interference pattern...
Light from a helium-neon laser (?=633nm) is used to illuminate two narrow slits. The interference pattern is observed on a screen 3.1mbehind the slits. Thirteen bright fringes are seen, spanning a distance of 50mm . What is the spacing (in mm) between the slits? Express your answer using two significant figures
A small helium-neon laser emits red visible light with a power of 5.30 mW in a...
A small helium-neon laser emits red visible light with a power of 5.30 mW in a beam that has a diameter of 2.30 mm . A) What is the amplitude of the electric field of the light? Express your answer with the appropriate units. B) What is the amplitude of the magnetic field of the light? C) What is the average energy density associated with the electric field? Express your answer with the appropriate units. D) What is the average...
A 0.100 mm-wide slit is illuminated with plane waves from a helium-neon laser of wavelength 0.699...
A 0.100 mm-wide slit is illuminated with plane waves from a helium-neon laser of wavelength 0.699 microns. Find the distance from the zeroth-order maximum to the first two irradiance nulls in mm when the pattern is observed on a wall Z=1.0m away.
Wave Optics - Double Slit interference A helium neon laser (LaTeX: \lambda=633\:nmλ = 633 n m)...
Wave Optics - Double Slit interference A helium neon laser (LaTeX: \lambda=633\:nmλ = 633 n m) illuminates a double slit that is 2 m from a screen. The light transmitted from the slits produces an interference pattern with a 3.2 mm spacing of successive bright fringes. What is the spacing of the slits? What frequency of laser light is needed to generate a 4.0 mm spacing of successive bright fringes? How will the bright fringe spacing change if the laser...
Why can Hydrogen and helium only hold two electrons in there valence shell, but Neon can...
Why can Hydrogen and helium only hold two electrons in there valence shell, but Neon can hold 8?(You will receive extra credit if you can explain this with quantum numbers)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT