Question

In: Physics

Laser light of wavelength 632.8 nm falls normally on a slit that is 0.0260 mm wide....

Laser light of wavelength 632.8 nm falls normally on a slit that is 0.0260 mm wide. The transmitted light is viewed on a distant screen where the intensity at the center of the central bright fringe is 8.40 W/m^2.

Part A

Find the maximum number of totally dark fringes on the screen, assuming the screen is large enough to show them all.

m_max =

  

SubmitRequest Answer

Part B

At what angle does the dark fringe that is most distant from the center occur?

|θmax| =

  

∘∘

SubmitRequest Answer

Part C

What is the maximum intensity of the bright fringe that occurs immediately before the dark fringe in part (b)? Approximate the angle at which this fringe occurs by assuming it is midway between the angles to the dark fringes on either side of it.

I = W/m^2

Please express answers in 3 significant figures

Solutions

Expert Solution


Related Solutions

Laser light of wavelength 632.8 nm falls normally on a slit that is 0.0230 mm wide....
Laser light of wavelength 632.8 nm falls normally on a slit that is 0.0230 mm wide. The transmitted light is viewed on a distant screen where the intensity at the center of the central bright fringe is 8.80 W/m2. Find the maximum number of totally dark fringes on the screen, assuming the screen is large enough to show them all.At what angle does the dark fringe that is most distant from the center occur?What is the maximum intensity of the...
Light of wavelength 610 nm falls on a slit 0.0572 mm wide. (a) On a very...
Light of wavelength 610 nm falls on a slit 0.0572 mm wide. (a) On a very large distant screen, how many totally dark fringes (indicating complete cancellation) will there be, including both sides of the central bright spot? Solve this problem without calculating all the angles! (Hint: What is the largest that sin?can be? What does this tell you is the largest that m can be?) dark fringes (b) At what angle will the dark fringe that is most distant...
A 0.50-mm-wide slit is illuminated by light of wavelength 500 nm.
A 0.50-mm-wide slit is illuminated by light of wavelength 500 nm. What is the width of the central maximum on a screen 2.0 m behind the slit in mm?  
A 0.50-mm-wide slit is illuminated by light of wavelength 500 nm.
A 0.50-mm-wide slit is illuminated by light of wavelength 500 nm. What is the width of the central maximum on a screen 2.0 m behind the slit?
Light with a wavelength of 616 nm passes through a slit 7.74 μm wide and falls...
Light with a wavelength of 616 nm passes through a slit 7.74 μm wide and falls on a screen 1.90 m away. Q : Find the linear distance on the screen from the central bright fringe to the first bright fringe above it.
A helium neon laser emits red light of wavelength 632.8 nm, which is obtained when neon...
A helium neon laser emits red light of wavelength 632.8 nm, which is obtained when neon atoms move from level 5s to level 3p. Given is a tube that contains 0.25 moles of a helium-neon mix, of which 15% are neon atoms. Also given is that while the laser is active, around 2% of the neon atoms are located at one of the two given energy levels at any time. a) what is the difference in energy between levels 5s...
A slit 0.100 cm wide is illuminated by light of wavelength 529. nm creating a diffraction...
A slit 0.100 cm wide is illuminated by light of wavelength 529. nm creating a diffraction pattern on a screen 284. cm away. How many millimeters are between the first 4 diffraction minima on the same side of the central diffraction maximum?
A 0.100 mm-wide slit is illuminated with plane waves from a helium-neon laser of wavelength 0.699...
A 0.100 mm-wide slit is illuminated with plane waves from a helium-neon laser of wavelength 0.699 microns. Find the distance from the zeroth-order maximum to the first two irradiance nulls in mm when the pattern is observed on a wall Z=1.0m away.
A double slit experiment is conducted with a red laser with wavelength l = 700 nm....
A double slit experiment is conducted with a red laser with wavelength l = 700 nm. The distance between the slits and the viewing screen is L = 2.00 m. Consider two experiments that have different slit spacings: Experiment A with dA = 2.00 μm and Experiment B with dB = 40.0 μm. For each experiment, calculate the following (be sure to keep at least three significant figures in all your intermediate calculations): a) Using Δr = d sinθ ,...
An argon laser that has a wavelength of 455 nm shines on a double-slit apparatus, which...
An argon laser that has a wavelength of 455 nm shines on a double-slit apparatus, which produces an interference pattern on a screen that is 10.0 m away from the slits. The slit separation distance is 70.0 μm. (a) How many bright fringes are there on the screen within an angle of ±1° relative to the central axis? (b) How many dark fringes are there on the screen within an angle of ±2° relative to the central axis? Be careful...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT