In: Finance
Assume that the risk-free rate, Rf = 5%; the expected rate of return on the market, E(Rm)= 11%; and that the standard deviation of returns on the market portfolio is σM =20%. Calculate the expected return and standard deviation of returns for portfolios that are 25%, 75%, and 125% invested in the market portfolio.
Please note following Points | ||||||||||
1) Standard Deviation of Risk Free Asset (σRf) is 0. | ||||||||||
2) For Risk Free Asset, as Standard Deviation is 0, | ||||||||||
Covariance = Correlation with any other risky asset | ||||||||||
will be 0. | ||||||||||
Therefore, | ||||||||||
Standard deviation of a Portfolio | ||||||||||
= √W1^2*σM^2 + W2^2*σRf^2 + 2*r*W1*W2*σM*σRf | ||||||||||
W1 = Weight of Market | ||||||||||
σM = Standard Deviation of Market | ||||||||||
W2 = Weight of Risk Free Asset | ||||||||||
σRf = Standard Deviation of Risk Free Asset = 0 | ||||||||||
r = Correlation between Market and Risk Free Asset = 0 | ||||||||||
So, | ||||||||||
Standard deviation of a Portfolio | ||||||||||
= √W1^2*σM^2 + W2^2*σRf^2 + 2*r*W1*W2*σM*σRf | ||||||||||
= √W1^2*σM^2 + W2^2*0^2 + 2*0*W1*W2*σM*σRf | ||||||||||
= √W1^2*σM^2 + 0 + 0 | ||||||||||
= √W1^2*σM^2 | ||||||||||
a) | 25% invested in Market Portfolio | |||||||||
Expected Return of Portfolio | ||||||||||
= Weight of Market*Return of Market + Weight of Risk Free Asset*Return of Risk Free Asset | ||||||||||
= Weight of Market*Return of Market + (1-Weight of Market)*Return of Risk Free Asset | ||||||||||
= 25%*11% + (1-25%)*5% | ||||||||||
= 2.75% + 0.75*5% | ||||||||||
= 2.75% + 3.75% | ||||||||||
= 6.50% | ||||||||||
Standard Deviation of Portfolio | ||||||||||
= √W1^2*σM^2 | ||||||||||
Where, | ||||||||||
W1 = Weight of Market = 25% = 0.25 | ||||||||||
σM = Standard Deviation of Market = 20% = 0.20 | ||||||||||
So, | ||||||||||
Standard Deviation of Portfolio | ||||||||||
= √W1^2*σM^2 | ||||||||||
= √0.25^2*0.20^2 | ||||||||||
= √0.0625*0.04 | ||||||||||
= √0.0025 | ||||||||||
= 0.05 | ||||||||||
i.e. 5% | ||||||||||
b) | 75% invested in Market Portfolio | |||||||||
Expected Return of Portfolio | ||||||||||
= Weight of Market*Return of Market + Weight of Risk Free Asset*Return of Risk Free Asset | ||||||||||
= Weight of Market*Return of Market + (1-Weight of Market)*Return of Risk Free Asset | ||||||||||
= 75%*11% + (1-75%)*5% | ||||||||||
= 8.25% + 0.25*5% | ||||||||||
= 8.25% + 1.25% | ||||||||||
= 9.50% | ||||||||||
Standard Deviation of Portfolio | ||||||||||
= √W1^2*σM^2 | ||||||||||
Where, | ||||||||||
W1 = Weight of Market = 75% = 0.75 | ||||||||||
σM = Standard Deviation of Market = 20% = 0.20 | ||||||||||
So, | ||||||||||
Standard Deviation of Portfolio | ||||||||||
= √W1^2*σM^2 | ||||||||||
= √0.75^2*0.20^2 | ||||||||||
= √0.5625*0.04 | ||||||||||
= √0.0225 | ||||||||||
= 0.15 | ||||||||||
i.e. 15% | ||||||||||
c) | 125% invested in Market Portfolio | |||||||||
Expected Return of Portfolio | ||||||||||
= Weight of Market*Return of Market + Weight of Risk Free Asset*Return of Risk Free Asset | ||||||||||
= Weight of Market*Return of Market + (1-Weight of Market)*Return of Risk Free Asset | ||||||||||
= 125%*11% + (1-125%)*5% | ||||||||||
= 13.75% + (-0.25)*5% | ||||||||||
= 13.75% - 1.25% | ||||||||||
= 12.50% | ||||||||||
Standard Deviation of Portfolio | ||||||||||
= √W1^2*σM^2 | ||||||||||
Where, | ||||||||||
W1 = Weight of Market = 125% = 1.25 | ||||||||||
σM = Standard Deviation of Market = 20% = 0.20 | ||||||||||
So, | ||||||||||
Standard Deviation of Portfolio | ||||||||||
= √W1^2*σM^2 | ||||||||||
= √1.25^2*0.20^2 | ||||||||||
= √1.5625*0.04 | ||||||||||
= √0.0625 | ||||||||||
= 0.25 | ||||||||||
i.e. 25% | ||||||||||