In: Statistics and Probability
Price | Adver | staff |
28.20871609 | 21.97500534 | 65.07690664 |
32.59666738 | 41.51570177 | 33.1777398 |
26.73039949 | 6.920529801 | 44.29288614 |
59.29822687 | 59.55671865 | 37.07861568 |
52.74620808 | 52.85088656 | 13.92544328 |
31.61610767 | 66.05960265 | 13.39564196 |
32.18436232 | 54.1134373 | 14.47874386 |
28.08694723 | 9.449903867 | 54.78209784 |
31.64174322 | 16.83294168 | 39.88357189 |
5.534073916 | 37.02307199 | 16.0339671 |
24.57274087 | 60.28519547 | 33.38068789 |
42.16727195 | 45.67506943 | 21.88741722 |
51.27002777 | 6.993163854 | 67.19183935 |
64.4103824 | 11.40888699 | 38.51634266 |
72.56248665 | 31.62038026 | 5.892971587 |
37.48664815 | 47.56782739 | 48.82183294 |
7.279427473 | 58.56547746 | 53.58790857 |
59.76821192 | 51.82973724 | 61.44520402 |
23.4725486 | 8.339030122 | 14.78423414 |
10.83635975 | 61.94936979 | 23.55586413 |
33.35718863 | 52.69280068 | 69.06109806 |
13.34864345 | 60.25101474 | 57.36060671 |
72.03482162 | 38.46079897 | 49.44776757 |
28.5953856 | 66.86925871 | 40.38132878 |
19.94979705 | 40.19974364 | 24.58769494 |
55.85879086 | 31.74214911 | 69.4840846 |
69.11664174 | 11.54133732 | 14.63682974 |
25.48280282 | 15.35676138 | 58.64238411 |
43.04956206 | 5.320444349 | 30.89831233 |
15.71779534 | 28.23435163 | 10.47105319 |
20.50096133 | 52.43430891 | 19.2362743 |
23.30378124 | 19.17645802 | 51.49433882 |
22.91070284 | 49.46272164 | 57.2153386 |
57.81136509 | 12.25699637 | 21.16321299 |
25.61738945 | 5.034180731 | 35 |
69.71480453 | 42.56889554 | 14.64537492 |
Question No 2: For the given data set, used in question 1; test the hypothesis that the means of variables sales, price and staff are same by using any 0.02 level of significance. Report the Excel output as well. (Marks 1.5)
(The problem is manually solved and excel output is given thereafter.)
Let and be the mean of treatment 1, treament 2 and treatment 3 i.e mean of variables sales, price and staff
The null hypothesis for an anova always assumes the population means are equal.
Hence, the null hypothesis as:
i.e all treatment means are equal.
and the alternative hypothesis is given by
i.e all treatment means are not equal.
The given observation are
Price | Adver | staff | |
28.209 | 21.975 | 65.077 | |
32.597 | 41.516 | 33.178 | |
26.73 | 6.9205 | 44.293 | |
59.298 | 59.557 | 37.079 | |
52.746 | 52.851 | 13.925 | |
31.616 | 66.06 | 13.396 | |
32.184 | 54.113 | 14.479 | |
28.087 | 9.4499 | 54.782 | |
31.642 | 16.833 | 39.884 | |
5.5341 | 37.023 | 16.034 | |
24.573 | 60.285 | 33.381 | |
42.167 | 45.675 | 21.887 | |
51.27 | 6.9932 | 67.192 | |
64.41 | 11.409 | 38.516 | |
72.562 | 31.62 | 5.893 | |
37.487 | 47.568 | 48.822 | |
7.2794 | 58.565 | 53.588 | |
59.768 | 51.83 | 61.445 | |
23.473 | 8.339 | 14.784 | |
10.836 | 61.949 | 23.556 | |
33.357 | 52.693 | 69.061 | |
13.349 | 60.251 | 57.361 | |
72.035 | 38.461 | 49.448 | |
28.595 | 66.869 | 40.381 | |
19.95 | 40.2 | 24.588 | |
55.859 | 31.742 | 69.484 | |
69.117 | 11.541 | 14.637 | |
25.483 | 15.357 | 58.642 | |
43.05 | 5.3204 | 30.898 | |
15.718 | 28.234 | 10.471 | |
20.501 | 52.434 | 19.236 | |
23.304 | 19.176 | 51.494 | |
22.911 | 49.463 | 57.215 | |
57.811 | 12.257 | 21.163 | |
25.617 | 5.0342 | 35 | |
69.715 | 42.569 | 14.645 | |
Total | 1318.84 | 1282.134 | 1324.916 |
Mean | 36.63444 | 35.61484 | 36.80321 |
Let Xij be the observations.
i = 1,2 ...r. r is total number of rows
j= 1,2,...t t is total number of treatment.
Here
r= 36
t=3
N= Total observation
= r*t
=108
The mean of these treatment can be calculate as
= 36.6344
= 35.61484
= 36.80321
Now obtaining the grand mean ( )
= 36.35083
Now calculating Sum of Squares.
Total Sum of Squares (TSS)
= ( 28.209- 36.35083)2 + ( 32.597- 36.35083)2 + ( 26.73- 36.35083)2 +.... ( 35- 36.35083)2 + ( 14.645- 36.35083)2
= 41376.37
Treatment Sum of Squares ( SST)
= 36*(36.6344- 36.35083)2 +36 ( 35.61484- 36.35083)2 +36 (36.35083- 36.35083)2
= 36*0.826771
= 29.76374
Error Sum of Square ( SSE)
SSE = TSS - SST
= 41376.37 - 29.76374
= 41.346.61
Obtaining Degree of Freedom
df( Treatment )= t-1
= 2
df(error)= N-t
= 105
df(Total)=N-1
= 107
Calculating Mean Square of Error
Treatment Mean Square ( MST)
= 29.76374/2
= 14.88187
= 41376.37/107
= 386.6951
= 41346/405
=393.7772
Now obtaining the test statistic( F- statistic)
= 14.88187/393.7772
= 0.037793
The anova table is
Source of Variation | SS | df | MS | F | P-value | |
Treatment | 29.76374 | 2 | 14.88187 | 0.037793 | 0.962926 | |
Error | 41346.61 | 105 | 393.7772 | |||
Total | 41376.37 | 107 |
Obtaining the p-value for F statistic = 0.037793
and df =( t-1,N-1)
= (2,105)
Therefore
p-value = 0.962926
Decision rule:
Reject H0 p-value < level of significance
Here
p-value> 0.02
We failed to reject the null hypothesis.
There is no sufficient evidence to conclude the means of variables sales, price and staff are different 0.02 level of significance.
The excel out put is given as
From the excel output, it is evident that p-value> 0.02 hence we failed to reject the null hypothesis. Hence means are not significantly different.
Excel output is obtained as follows