Question

In: Physics

If an object of mass m1 = 0.55 kg is sliding without friction in the +x-direction...

If an object of mass m1 = 0.55 kg is sliding without friction in the +x-direction on a level surface at a speed of v1 = 0.72 m/s and it collides with a stationary object of mass m1 = 0.55 kg, determine the total initial and final momenta (before and after the collision) as well as the total initial and final Mechanical Energy (before and after the collision) for;

1) a perfectly elastic collision, and

2) a perfectly inelastic collision

Energy losses during an energy transformation process can be quantified as the efficiency;

e=useful energy out total energy in x 100%

3) State what the useful energies in and out are and then calculate the efficiency for the perfectly elastic and the efficiency for the perfectly inelastic collisions described above.

Solutions

Expert Solution


Related Solutions

A(n) 8.5-kg object is sliding across the ice at 2.34 m/s in the positive x direction....
A(n) 8.5-kg object is sliding across the ice at 2.34 m/s in the positive x direction. An internal explosion occurs, splitting the object into two equal chunks and adding 11 J of kinetic energy to system. The explosive separation takes place over a 0.16-s time interval. Assume that the one of the chunks after explosion moves in the positive x direction. The x component of the average acceleration of this chunk during the explosion is afrontx, the x component fo...
A(n) 7.8-kg object is sliding across the ice at2.34 m/s in the positive x direction. An...
A(n) 7.8-kg object is sliding across the ice at2.34 m/s in the positive x direction. An internal explosion occurs, splitting the object into two equal chunks and adding 12 J of kinetic energy to system. The explosive separation takes place over a 0.16-s time interval. Assume that the one of the chunks after explosion moves in the positive xdirection. The x component of the average acceleration of this chunk during the explosion is afrontx, the x component fo the average...
An object with mass m1= 3.00 kg is moving along the positive x-axis with a speed...
An object with mass m1= 3.00 kg is moving along the positive x-axis with a speed v1i=2 m/s straight towards two objects with masses m2= 2.00 kg and m3= 4.00 kg, which are initially at rest. When they collide, object 1 comes to rest and object 2 moves away with a speed of v2f=1.5 m/s at an angle of 50o from the incoming path of object 1. For everything that follows, use a coordinate system where the final path of...
The coefficient of friction between the block of mass m1 = 3.00 kg and the surface...
The coefficient of friction between the block of mass m1 = 3.00 kg and the surface in the figure below is μk = 0.455. The system starts from rest. What is the speed of the ball of mass m2 = 5.00 kg when it has fallen a distance h = 1.10 m?
In the figure below, the hanging object has a mass of m1 = 0.400 kg; the...
In the figure below, the hanging object has a mass of m1 = 0.400 kg; the sliding block has a mass of m2 = 0.810 kg; and the pulley is a hollow cylinder with a mass of M = 0.350 kg, an inner radius of R1 = 0.020 0 m, and an outer radius of R2 = 0.030 0 m. Assume the mass of the spokes is negligible. The coefficient of kinetic friction between the block and the horizontal surface...
A particle of mass m1 = 3.17kg is traveling in the x-direction at a speed of...
A particle of mass m1 = 3.17kg is traveling in the x-direction at a speed of v1 = 24.6m/s and collides with another particle of mass m2 = 2.45kg that is initially at rest. After the collision, the first particle is traveling with a speed of 7.96m/s at an angle of 311o with respect to the x-axis. (a) What is the magnitude of the final velocity of the second particle? (b) What angle does the trajectory of the second particle...
Consider an object of mass m1 = 0.360 kg moving with a uniform speed of 5.40...
Consider an object of mass m1 = 0.360 kg moving with a uniform speed of 5.40 m/s on a frictionless surface. This object makes an elastic head-on collision with another object of mass m2 = 0.645 kg which is initially at rest. (a) Find the speed of m1 immediately after collision. m/s (b) Find the speed of m2 immediately after collision m/s
A bar of mass m = 0.200 kg slide without friction on a pair of rails...
A bar of mass m = 0.200 kg slide without friction on a pair of rails separated by a distance at the length of 1.20 m. The pair of rails was located on an inclined plane making an angle of 25 degrees with respect to the ground. The rails were connected by a resistor at the top of the incline. The resistance of the resistor is R= 1 Ohm, and a uniform magnetic field of magnitude B = 0.500 T...
How can we decide the direction of friction in sliding or rotating wheel?
How can we decide the direction of friction in sliding or rotating wheel?
An object of mass m1 = 0.435 kg starts from rest at point  and slides down an...
An object of mass m1 = 0.435 kg starts from rest at point  and slides down an incline surface that makes an angle θ = 36.0° with the horizontal as shown. The coefficient of kinetic friction between the object and the incline surface is 0.395. After sliding down a distance d = 5.60 m, it makes a perfectly inelastic collision with an object of mass m2 = 0.650 kg at point . a) Find the speed of m1 at point  just before...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT