Question

In: Physics

A(n) 8.5-kg object is sliding across the ice at 2.34 m/s in the positive x direction....

A(n) 8.5-kg object is sliding across the ice at 2.34 m/s in the positive x direction. An internal explosion occurs, splitting the object into two equal chunks and adding 11 J of kinetic energy to system. The explosive separation takes place over a 0.16-s time interval. Assume that the one of the chunks after explosion moves in the positive x direction. The x component of the average acceleration of this chunk during the explosion is afrontx, the x component fo the average acceleration of the other chunk during the explosion is arearx

Solutions

Expert Solution

lets assume that the other chunk moves in negative x direction.

let the final velocity (after 0.16 s time period) of first chunk is v1 and second chunk is v2.

v1 is along +ve x direction and v2 is along -ve x direction

then using conservation of momentum principle:

8.5*2.34=8.5*0.5*v1-8.5*0.5*v2

==> v1-v2=4.68 ...(1)

using conservation of energy:

initial kinetic energy+addition of energy=final kinetic energy

==>0.5*8.5*2.34^2+11=0.5*0.5*8.5*v1^2+0.5*8.5*0.5*v2^2

==>v1^2+v2^2=16.1276

using v1=v2+4.68,

we get

v2^2+4.68^2+9.36*v2+v2^2=16.1276

==>2*v2^2+9.36*v2+5.7748=0

solving for v2, we get v2=-0.7312 m/s

or v2=-3.9488 m/s

taking v2=-0.7312 m/s, v1=3.9488 m/s

taking v2=-3.9488 m/s, v1=0.7312 m/s

so in either case, both the blocks are moving in same direction (+ve x direction) with one moving with speed 3.9488 m/s and other moving with 0.7312 m/s

average acceleration=change in velocity/time taken

so afrontx=(3.9488-2.34)/0.16=10.055 m/s^2

arearx=(0.7312-2.34)/0.16=-10.055 m/s^2


Related Solutions

If an object of mass m1 = 0.55 kg is sliding without friction in the +x-direction...
If an object of mass m1 = 0.55 kg is sliding without friction in the +x-direction on a level surface at a speed of v1 = 0.72 m/s and it collides with a stationary object of mass m1 = 0.55 kg, determine the total initial and final momenta (before and after the collision) as well as the total initial and final Mechanical Energy (before and after the collision) for; 1) a perfectly elastic collision, and 2) a perfectly inelastic collision...
A 15.0 kg object moving in the +x direction at 5.5 m/s collides head-on with a...
A 15.0 kg object moving in the +x direction at 5.5 m/s collides head-on with a 11.5 kg object moving in the −x direction at 4.0 m/s . Part A- Find the final velocity of each mass if the objects stick together. Express your answers using two significant figures. Enter your answers numerically separated by a comma. Part B- Find the final velocity of each mass if the collision is elastic. Express your answers using two significant figures. Enter your...
A 750-g disk sliding along frictionless ice with a speed of 8.5 m/s strikes a stationary...
A 750-g disk sliding along frictionless ice with a speed of 8.5 m/s strikes a stationary rod-disk combo 12-cm from its center-of-mass. This rod-disk combo is made from a 360-g rod that is 35-cm long, with 2 150-g solid disks of radius 7.0-cm attached, one on each end of the rod. After the perfectly elastic collision, the disk moves off along a path that is 28º above its original path, while the rod-disk combo spins about its center-of-mass as it...
3) A 2 kg block is sliding at an initial speed of 10 m/s across a...
3) A 2 kg block is sliding at an initial speed of 10 m/s across a surface, encountering a constant friction force of 7 N. How much work is done on the block after it slides 22 cm? Answer:   Hint: Does the block gain or lose energy during this process? What sign does this imply for the work done on it? 4) How fast is the block moving after sliding 22 cm? Answer:   Hint: You can treat the block like...
The momentum of an object is determined to be 7.2 x 103 kg m/s
The momentum of an object is determined to be 7.2 x 103 kg · m/s. Express this quantity as provided or use any equivalent unit. (Note: 1 kg = 1000 g).
An object moving with uniform acceleration has a velocity of 10.0 cm/s in the positive x-direction...
An object moving with uniform acceleration has a velocity of 10.0 cm/s in the positive x-direction when its x-coordinate is 2.73cm. If its x-coordinate 2.95 s later is −5.00 cm, what is its acceleration?
A 3 kg object is moving along the +y+y direction with a speed of 4 m/s...
A 3 kg object is moving along the +y+y direction with a speed of 4 m/s when it experiences an impulse of 5i^−8j^5i^−8j^ Ns. What is the object's speed after the impulse is applied?
A block of 4 kg moves in the +x direction with a velocity of 15 m/s...
A block of 4 kg moves in the +x direction with a velocity of 15 m/s while a block of 6 kg moves in the +y direction with a velocity of 10 m/s. They collide and stick together. Calculate the following: a. What is the momentum in this system? b. What is the final velocity of the two blocks?
A billiard ball with speed of 3.0 m/s in the positive x direction hits an identical...
A billiard ball with speed of 3.0 m/s in the positive x direction hits an identical second billiard ball that is at rest at the origin. After the collision one of the balls has a momentum with an angle of -24 degrees respect to the positive x axis. The direction of the momentum of the second ball in degrees is:
An electron moving at 16048180 m/s in the positive x-direction at right angles to a magnetic...
An electron moving at 16048180 m/s in the positive x-direction at right angles to a magnetic field, experiences a magnetic force of 0.0000000024 N in the positive y-direction. Find the magnitude of the magnetic field. What must be the direction of this magnetic field
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT