In: Statistics and Probability
The table below gives the pretest and posttest scores on the listening test in Spanish for 20 high school Spanish teachers who attended an intensive summer course in Spanish
Pretest 30 28 31 26 20 30 34 15 28 20 30 29 31 29 34 20 26 25 31 29
Posttest 29 30 32 30 16 25 31 18 33 25 32 28 34 32 32 27 28 29 32 32
a. At 5% significance level, test the hypothesis that attending an intensive summer course improves listening skills in Spanish.
b. Find a 90% confidence interval for the mean increase in listening score due to attending an intensive summer course in Spanish.
a)
Sample #1 | Sample #2 | difference , Di =sample1-sample2 | (Di - Dbar)² |
30 | 29 | 1.00 | 6.00 |
28 | 30 | -2.00 | 0.30 |
31 | 32 | -1.00 | 0.20 |
26 | 30 | -4.00 | 6.50 |
20 | 16 | 4.00 | 29.70 |
30 | 25 | 5.00 | 41.60 |
34 | 31 | 3.00 | 19.80 |
15 | 18 | -3.00 | 2.40 |
28 | 33 | -5.00 | 12.60 |
20 | 25 | -5.00 | 12.60 |
30 | 32 | -2.00 | 0.30 |
29 | 28 | 1.00 | 6.00 |
31 | 34 | -3.00 | 2.40 |
29 | 32 | -3.00 | 2.40 |
34 | 32 | 2.00 | 11.90 |
20 | 27 | -7.00 | 30.80 |
26 | 28 | -2.00 | 0.30 |
25 | 29 | -4.00 | 6.50 |
31 | 32 | -1.00 | 0.20 |
29 | 32 | -3.00 | 2.40 |
sample 1 | sample 2 | Di | (Di - Dbar)² | |
sum = | 546 | 575 | -29.000 | 194.950 |
Ho : µd= 0
Ha : µd < 0
Level of Significance , α =
0.05 claim:µd=0
sample size , n = 20
mean of sample 1, x̅1= 27.300
mean of sample 2, x̅2= 28.750
mean of difference , D̅ =ΣDi / n =
-1.450
std dev of difference , Sd = √ [ (Di-Dbar)²/(n-1) =
3.2032
std error , SE = Sd / √n = 3.2032 /
√ 20 = 0.7163
t-statistic = (D̅ - µd)/SE = (
-1.45 - 0 ) /
0.7163 = -2.024
Degree of freedom, DF= n - 1 =
19
p-value = 0.028609
[excel function: =t.dist(t-stat,df) ]
Conclusion: p-value <α , Reject null
hypothesis
attending an intensive summer course improves listening skills in Spanish.
.............
b)
sample size , n = 20
Degree of freedom, DF= n - 1 =
19 and α = 0.1
t-critical value = t α/2,df =
1.7291 [excel function: =t.inv.2t(α/2,df) ]
std dev of difference , Sd = √ [ (Di-Dbar)²/(n-1) =
3.2032
std error , SE = Sd / √n = 3.2032 /
√ 20 = 0.7163
margin of error, E = t*SE = 1.7291
* 0.7163 = 1.2385
mean of difference , D̅ =
-1.450
confidence interval is
Interval Lower Limit= D̅ - E = -1.450
- 1.2385 = -2.689
Interval Upper Limit= D̅ + E = -1.450
+ 1.2385 = -0.211
so, confidence interval is (
-2.6885 < µd < -0.2115
)
...............
THANKS
revert back for doubt
please upvote