Question

In: Statistics and Probability

A simple random sample of pulse rates of 20 women from a normally distributed population results...

A simple random sample of pulse rates of 20 women from a normally distributed population results in a standard deviation of 12.2beats per minute. The normal range of pulse rates of adults is typically given as 60 to 100 beats per minute. If the range rule of thumb is applied to that normal​ range, the result is a standard deviation of 10 beats per minute. Use the sample results with a 0.01 significance level to test the claim that pulse rates of women have a standard deviation equal to 10 beats per minute. Complete parts​ (a) through​ (d) below.

Solutions

Expert Solution

The statistical software output for this problem is:

One sample variance summary hypothesis test:

σ2 : Variance of population
H0 : σ2 = 100
HA : σ2 ≠ 100

Hypothesis test results:

Variance Sample Var. DF Chi-square Stat P-value
σ2 148.84 19 28.2796 0.1564

Hence,

a) Hypotheses:

H0 : σ = 10
HA : σ ≠ 10

b) Test statistic = 28.280

c) P - value = 0.156

d) Since p - value is greater than 0.01,we do not reject Ho. Hence,

There is not sufficient evidence to reject the claim that pulse rates of women have a standard deviation equal to 10 beats per minute.


Related Solutions

A simple random sample of pulse rates of 60 women from a normally distributed population results...
A simple random sample of pulse rates of 60 women from a normally distributed population results in a standard deviation of 12.7 beats per minute. The normal range of pulse rates of adults is typically given as 60 to 100 beats per minute. If the range rule of thumb is applied to that normal​ range, the result is a standard deviation of 10 beats per minute. Use the sample results with a 0.01 significance level to test the claim that...
A simple random sample of pulse rates of 50 women from a normally distributed population results...
A simple random sample of pulse rates of 50 women from a normally distributed population results in a standard deviation of 13.3 beats per minute. The normal range of pulse rates of adults is typically given as 60 to 100 beats per minute. If the range rule of thumb is applied to that normal​ range, the result is a standard deviation of 10 beats per minute. Use the sample results with a 0.01 significance level to test the claim that...
A simple random sample of 153 men from a normally distributed population results in a standard...
A simple random sample of 153 men from a normally distributed population results in a standard deviation of 10.9 beats per minute. The normal range of pulse rates of adults is typically given as 60 to 100 beats per minute. If the range rule of thumb is applied to that normal​ range, the result is a standard deviation of 10 beats per minute. Use the sample results with a 0.01 significance level to test the claim that pulse rates of...
A simple random sample of 4444 men from a normally distributed population results in a standard...
A simple random sample of 4444 men from a normally distributed population results in a standard deviation of 7.77.7 beats per minute. The normal range of pulse rates of adults is typically given as 60 to 100 beats per minute. If the range rule of thumb is applied to that normal​ range, the result is a standard deviation of 1010 beats per minute. Use the sample results with a 0.050.05 significance level to test the claim that pulse rates of...
A simple random sample of 35 men from a normally distributed population results in a standard...
A simple random sample of 35 men from a normally distributed population results in a standard deviation of 11.4 beats per minute. The normal range of pulse rates of adults is typically given as 60 to 100 beats per minute. If the range rule of thumb is applied to that normal range, the result is a standard deviation of 10 beats per minute. Use the sample results with a 0.10 significance level to test the claim that pulse rates of...
A simple random sample of 35 men from a normally distributed population results in a standard...
A simple random sample of 35 men from a normally distributed population results in a standard deviation of 12.5 beats per minute. The normal range of pulse rates of adults is typically given as 60 to 100 beats per minute. If the range rule of thumb is applied to that normal​ range, the result is a standard deviation of 10 beats per minute. Use the sample results with a 0.10 significance level to test the claim that pulse rates of...
A simple random sample of 41men from a normally distributed population results in a standard deviation...
A simple random sample of 41men from a normally distributed population results in a standard deviation of 12.5 beats per minute. The normal range of pulse rates of adults is typically given as 60 to 100 beats per minute. If the range rule of thumb is applied to that normal​ range, the result is a standard deviation of 10 beats per minute. Use the sample results with a 0.05 significance level to test the claim that pulse rates of men...
A simple random sample of 33 men from a normally distributed population results in a standard...
A simple random sample of 33 men from a normally distributed population results in a standard deviation of 8.2 beats per minute. The normal range of pulse rates of adults is typically given as 60 to 100 beats per minute. If the range rule of thumb is applied to that normal​ range, the result is a standard deviation of 10 beats per minute. Use the sample results with a 0.10 significance level to test the claim that pulse rates of...
Pulse rates for Men A simple random sample of 40 pulse rates of women were taken....
Pulse rates for Men A simple random sample of 40 pulse rates of women were taken. The mean of women’s pulse rates have a mean of 67.3 beats per minute and a standard deviation of 10.3 beats per minute. Construct a 99% confidence interval estimate of the standard deviation of the pulse rates of men. Pulse rates are normally distributed.
Assume that the sample is a simple random sample obtained from a normally distributed population of...
Assume that the sample is a simple random sample obtained from a normally distributed population of IQ scores of statistics professors. Use the table below to find the minimum sample size needed to be 99​% confident that the sample standard deviation s is within 1​% of sigma. Is this sample size​ practical? sigma To be​ 95% confident that s is within ​1% ​5% ​10% ​20% ​30% ​40% ​50% of the value of sigma​, the sample size n should be at...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT