Question

In: Physics

A particle of mass m moves under the influence of gravity g on the inner surface...

A particle of mass m moves under the influence of gravity g on the inner surface of a smooth cone of half-angle α. The axis of the cone is vertical, with its vertex downward. (a) Find the equation(s) of constraint of the system. (b) Find Lagrange’s equations of motion using the method of undetermined multipliers. (c) Determine the condition on the angular velocity ω such that the particle can describe a horizontal circle at a height h above the vertex.

Solutions

Expert Solution


Related Solutions

A particle with mass m moves on the surface of a cylinder with radius R. At...
A particle with mass m moves on the surface of a cylinder with radius R. At the same time, the force F = -kr on the particle affects it through the z axis. Using the z-and θ generalized coordinates, find the system's hamitonians. Solve the Hamilton equation after defining the conservative quantities.
A material particle with mass M moves under the gravitational effect of the earth. Solve the...
A material particle with mass M moves under the gravitational effect of the earth. Solve the Hamilton-jacobi equation of the particle.
A material particle with mass M moves under the gravitational effect of the earth. Solve the...
A material particle with mass M moves under the gravitational effect of the earth. Solve the Hamilton-jacobi equation of the particle.
A particle with mass m begins its motion from the state of rest under the influence...
A particle with mass m begins its motion from the state of rest under the influence of an oscillating force F(t) = F0 sin(γ t). Find the particle’s velocity and the distance traveled at time t1, when the force reaches its first maximum, and at time t2, when the force becomes equal to zero.
does gravity influence weight? does gravity influence mass?
does gravity influence weight? does gravity influence mass?
A particle of mass 0.000117 g and charge 15 mC moves in a region of space...
A particle of mass 0.000117 g and charge 15 mC moves in a region of space where the electric field is uniform and is 4.5 N/C in the x direction and zero in the y and z direction. If the initial velocity of the particle is given by vy = 3.6 × 10^5 m/s, vx = vz = 0, what is the speed of the particle at 0.7 s? Answer in units of m/s.
particle of mass m, which moves freely inside an infinite potential well of length a, is...
particle of mass m, which moves freely inside an infinite potential well of length a, is initially in the state Ψ(x, 0) = r 3 5a sin(3πx/a) + 1 √ 5a sin(5πx/a). (a) Normalize Ψ(x, 0). (b) Find Ψ(x, t). (c) By using the result in (b) calculate < p2 >. (d) Calculate the average energy
A particle of mass M moves along a straight line with initial speed vi. A force...
A particle of mass M moves along a straight line with initial speed vi. A force of magnitude Fpushes the particle a distance D along the direction of its motion. A) Find vf, the final speed of the particle after it has traveled a distance D. Express the final speed in terms of vi, M, F, and D. B) By what multiplicative factor RK does the initial kinetic energy increase, and by what multiplicative factor RW does the work done...
Mass M moves to the right with speed =v along a frictionless horizontal surface and crashes...
Mass M moves to the right with speed =v along a frictionless horizontal surface and crashes into an equal mass M initially at rest. Upon colliding, the two masses stick together and move with speed V to the right. Notice that v and V denote different speeds.  After the collision the magnitude of the momentum of the system is: (pick all correct answers) 2 M V M V 0 2 M v M v
Classical mechanics - upper level task 1. A particle of mass m, in one dimension, moves...
Classical mechanics - upper level task 1. A particle of mass m, in one dimension, moves in the field of force constant F. Canonical transformation is: q (t) → Q (t) = q (t + τ) p (t) → P (t) = p (t + τ) (1) Find the derivative function F2 (q, P) , then linearize it by keeping only the linear contributions in τ. Shoe that f2 (q, P), the contribution within F2 that multiplies τ corresponds to...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT