Question

In: Physics

A particle of mass 0.000117 g and charge 15 mC moves in a region of space...

A particle of mass 0.000117 g and charge 15 mC moves in a region of space where the electric field is uniform and is 4.5 N/C in the x direction and zero in the y and z direction. If the initial velocity of the particle is given by vy = 3.6 × 10^5 m/s, vx = vz = 0, what is the speed of the particle at 0.7 s? Answer in units of m/s.

Solutions

Expert Solution

If the particle experience a costant force then theacceleration along the y direction is

         ay = e E / m

             = (15×10-3 C)(4.5 N/C) / (1.17*10-7 kg )

             = 5.76×105 m/s2

Using the equation Vy = Voy+ ay t

                                Vy=   ayt           [  Voy = 0]

                                    = (5.76×105 m/s2 )(0.7s)

                                     = 4.03×105 m/s

   As Vx and Vz =0 so the speed is 4.03×105 m/s


Related Solutions

A 6.60 −μC particle moves through a region of space where an electric field of magnitude...
A 6.60 −μC particle moves through a region of space where an electric field of magnitude 1350 N/C points in the positive x direction, and a magnetic field of magnitude 1.25 T points in the positive z direction. If the net force acting on the particle is 6.21×10−3 N in the positive x direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane.
A particle of mass m moves under the influence of gravity g on the inner surface...
A particle of mass m moves under the influence of gravity g on the inner surface of a smooth cone of half-angle α. The axis of the cone is vertical, with its vertex downward. (a) Find the equation(s) of constraint of the system. (b) Find Lagrange’s equations of motion using the method of undetermined multipliers. (c) Determine the condition on the angular velocity ω such that the particle can describe a horizontal circle at a height h above the vertex.
At time t=0 a positively charged particle of mass m=5.95 g and charge q=10.8 μC is injected into the region of the uniform magnetic
  At time t=0 a positively charged particle of mass m=5.95 g and charge q=10.8 μC is injected into the region of the uniform magnetic B=B k and electric E=−E k fields with the initial velocity v=v0 i. The magnitudes of the fields: B=0.43 T, E=722 V/m, and the initial speed v0=3.42 m/s are given. Find at what time t, the particle's speed would become equal to v(t)=4.14·v0: t =____ seconds.  
A particle (mass = 6.7 x 10-27 kg, charge = 3.2 x 10-19 C) moves along...
A particle (mass = 6.7 x 10-27 kg, charge = 3.2 x 10-19 C) moves along the positive x axis with a speed of 4.1 x 105 m/s. It enters a region of uniform electric field parallel to its motion and comes to rest after moving 5.0 m into the field. What is the magnitude of the electric field (in N/C) ?
A point charge with a mass of 1.81 ng and a charge of +1.22 uC moves...
A point charge with a mass of 1.81 ng and a charge of +1.22 uC moves in the x-y plane with a velocity of 3.00 x 104 m/s in a direction 15° above the +x-axis. At time t=0, the point charge enters a uniform magnetic field of strength 1.25 T that points in the +x-direction. Assume that the point charge remains immersed in the uniform magnetic field after time t=0. a. (5 points) What is the magnitude and direction of...
A point charge with a mass of 1.81 ng and a charge of +1.22 ?C moves...
A point charge with a mass of 1.81 ng and a charge of +1.22 ?C moves in the x-y plane with a velocity of 3.00 x 104 m/s in a direction 15° above the +x-axis. At time t=0, the point charge enters a uniform magnetic field of strength 1.25 T that points in the +x-direction.Assume that the point charge remains immersed in the uniform magnetic field after time t=0. a) What is the magnitude and direction of the magnetic force...
A particle that has a charge of 7.6 μC moves with a velocity of magnitude 4...
A particle that has a charge of 7.6 μC moves with a velocity of magnitude 4 × 105 m/s along the +x axis. It experiences no magnetic force, although there is a magnetic field present. The maximum possible magnetic force that the charge with the given speed could experience has a magnitude of 0.310 N. Find the magnitude and direction of the magnetic field. Note that there are two possible answers for the direction of the field.
A particle with mass m moves on the surface of a cylinder with radius R. At...
A particle with mass m moves on the surface of a cylinder with radius R. At the same time, the force F = -kr on the particle affects it through the z axis. Using the z-and θ generalized coordinates, find the system's hamitonians. Solve the Hamilton equation after defining the conservative quantities.
A particle of charge ?7.5 mC is released from rest at the point x ? 60...
A particle of charge ?7.5 mC is released from rest at the point x ? 60 cm on an x axis. The particle begins to move due to the presence of a charge Q that remains fixed at the origin. What is the kinetic energy of the particle at the instant it has moved 40 cm if (a) Q ? ?20 mC and (b) Q ? ?20 mC?
Physical Chemistry problem: How does the confinement of a particle to a finite region of space...
Physical Chemistry problem: How does the confinement of a particle to a finite region of space lead to the quantization of its energy? You may use any combination of words, images, or equations to support your answer.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT