In: Finance
Using the data in the table below, estimate the demand function for cod.
Price, dollars per pound |
Quantity, thousand pounds per day |
1.90 |
1.5 |
1.35 |
2.2 |
1.25 |
4.4 |
1.20 |
5.9 |
0.95 |
6.5 |
0.85 |
7.0 |
0.73 |
8.8 |
Using the Excel trendline option to estimate a linear demand function, the linear demand function is
Qequals=12.53 minus 6.25 p12.53−6.25p.
Suppose the quantity in the first row of the table were
22
instead of 1.5.
The linear demand function would now be
Qequals=nothingminus−nothingp.
(Enter your responses rounded to two decimal places.)
The linear trend line Regression Equation is represented by the following equation
y = a + b *x…………………….. (1)
Where a is the y-intercept of the line and b is the slope of the line.
Formula to calculate the a and b are following
Slop b = Sum of {(x-xbar)*(y-ybar)}/ Sum of {(x-xbar)^2}
Intercept a = ybar - b * x bar
Price (x) | Quantity, thousand pounds per day (Y) | x - x bar | y - y bar | (x-xbar)*(y-ybar) | (x-xbar)^2 | (y-ybar)^2 | |
1.90 | 1.5 | 0.72 | -3.69 | -2.67 | 0.52 | 13.58 | |
1.35 | 2.2 | 0.17 | -2.99 | -0.52 | 0.03 | 8.91 | |
1.25 | 4.4 | 0.07 | -0.79 | -0.06 | 0.01 | 0.62 | |
1.20 | 5.9 | 0.02 | 0.71 | 0.02 | 0.00 | 0.51 | |
0.95 | 6.5 | -0.23 | 1.31 | -0.30 | 0.05 | 1.73 | |
0.85 | 7.0 | -0.33 | 1.81 | -0.59 | 0.11 | 3.29 | |
0.73 | 8.8 | -0.45 | 3.61 | -1.61 | 0.20 | 13.06 | |
Mean | 1.18 | 5.19 | |||||
x bar ↑ | ybar ↑ | ||||||
Sum | -5.73 | 0.92 | 41.71 | ||||
slop b = Sum of {(x-xbar)*(y-ybar)}/ Sum of {(x-xbar)^2} | -6.25 | ||||||
Intercept a = ybar - b * x bar | 12.53 | ||||||
The linear Equation | Y = a + bx = | 12.53- 6.25*x |
Note: x is equal to p & y is equal to Q |
Suppose the quantity in the first row of the table were 22 instead of 1.5.
Price (x) | Quantity, thousand pounds per day (Y) | x - x bar | y - y bar | (x-xbar)*(y-ybar) | (x-xbar)^2 | (y-ybar)^2 | |
1.90 | 22 | 0.72 | 13.89 | 10.06 | 0.52 | 192.81 | |
1.35 | 2.2 | 0.17 | -5.91 | -1.03 | 0.03 | 34.98 | |
1.25 | 4.4 | 0.07 | -3.71 | -0.28 | 0.01 | 13.80 | |
1.20 | 5.9 | 0.02 | -2.21 | -0.05 | 0.00 | 4.90 | |
0.95 | 6.5 | -0.23 | -1.61 | 0.36 | 0.05 | 2.61 | |
0.85 | 7.0 | -0.33 | -1.11 | 0.36 | 0.11 | 1.24 | |
0.73 | 8.8 | -0.45 | 0.69 | -0.31 | 0.20 | 0.47 | |
Mean | 1.18 | 8.11 | |||||
x bar ↑ | ybar ↑ | ||||||
Sum | 9.12 | 0.92 | 250.81 | ||||
slop b = Sum of {(x-xbar)*(y-ybar)}/ Sum of {(x-xbar)^2} | 9.95 | ||||||
Intercept a = ybar - b * x bar | -3.58 | ||||||
The linear Equation | Y = a + bx = | 9.95*x -3.58 |