Question

In: Statistics and Probability

If X~N (8, σ2), find: i. P (8-2σ < X < 8 +3σ) ii. The value...

If X~N (8, σ2),
find:
i. P (8-2σ < X < 8 +3σ)
ii. The value of σ, if P (X ≤ 10) = 0.0778

Solutions

Expert Solution

thank you.


Related Solutions

Consider the following hypotheses: H0: σ2 = 210 HA: σ2 ≠ 210 Find the p-value based...
Consider the following hypotheses: H0: σ2 = 210 HA: σ2 ≠ 210 Find the p-value based on the following sample information, where the sample is drawn from a normally distributed population. a. s2= 281; n = 34 The p-value is___________. p-value  0.10 0.05  p-value < 0.10 0.02  p-value < 0.05 0.01  p-value < 0.02 p-value < 0.01 b. s2= 139; n = 34 The p-value is___________. p-value  0.10 0.05  p-value < 0.10 0.02  p-value < 0.05 0.01  p-value < 0.02 p-value < 0.01 c. Which of the above...
Consider the following hypotheses: H0: σ2 = 210 HA: σ2 ≠ 210 Find the p-value based...
Consider the following hypotheses: H0: σ2 = 210 HA: σ2 ≠ 210 Find the p-value based on the following sample information, where the sample is drawn from a normally distributed population. a. s2 = 303; n = 28 b. s2 = 108; n = 28 c. Which of the above sample information enables us to reject the null hypothesis at α = 0.01? s2 = 303; n = 28 Do not reject the null hypothesis  the population variance does not differ...
Consider the following hypotheses: H0: σ2 = 210 HA: σ2 ≠ 210 Find the p-value based...
Consider the following hypotheses: H0: σ2 = 210 HA: σ2 ≠ 210 Find the p-value based on the following sample information, where the sample is drawn from a normally distributed population. a. s2 = 281; n = 34 p-value  0.10 0.05  p-value < 0.10 0.02  p-value < 0.05 0.01  p-value < 0.02 p-value < 0.01 b. s2 = 139; n = 34 p-value  0.10 0.05  p-value < 0.10 0.02  p-value < 0.05 0.01  p-value < 0.02 p-value < 0.01 c. Which of the above sample information enables us...
Find the critical X2 -value to test the claim σ2 > 1.9 if n = 18...
Find the critical X2 -value to test the claim σ2 > 1.9 if n = 18 and α = 0.01.
1. Assume X ∼ N(20, 25), (a) find P(X > 25) (b) the value of x...
1. Assume X ∼ N(20, 25), (a) find P(X > 25) (b) the value of x if P(X > x) = 0.975. (c) find the values of a and b, two symmetrical values about 20 such that P(a < X < b) = 0.95. (d) If X1, X2, . . . , X100 is random sample for the distribution of X • what is the sampling distribution of the sample mean X¯? • find P(X >¯ 20.50) (e) Suppose the...
x~N(55,36). find p(x>72) and p(50<=x<=68)
x~N(55,36). find p(x>72) and p(50<=x<=68)
please be very specific on showing work done!! If Z∼N(μ=0,σ2=1)Z∼N(μ=0,σ2=1), find the following probabilities: P(Z<1.58)=P(Z<1.58)= P(Z=1.58)=P(Z=1.58)=...
please be very specific on showing work done!! If Z∼N(μ=0,σ2=1)Z∼N(μ=0,σ2=1), find the following probabilities: P(Z<1.58)=P(Z<1.58)= P(Z=1.58)=P(Z=1.58)= P(Z>−.27)=P(Z>−.27)= P(−1.97<Z<2.46)=
9. Let X ~ N(194; 24). Find: (a) P(X <= 218) (b) P(145 < X <...
9. Let X ~ N(194; 24). Find: (a) P(X <= 218) (b) P(145 < X < 213) (c) The first quartile for X (d) The third quartile for X (e) the IQR for X (f) P(|X-194|> 41) 10. A soft drink machine discharges an average of 345 ml per cup. The amount of drink is normally distributed with standard deviation of 30 ml. What fraction of cups will contain more than 376 ml? (Keep 4 decimals)
Let X ~ N(190; 23). Find: (a) P(X <= 213) (b) P(148 < X < 202)...
Let X ~ N(190; 23). Find: (a) P(X <= 213) (b) P(148 < X < 202) (c) The first quartile for X (d) The third quartile for X (e) the IQR for X (f) P(|X-190|> 34
Let X ~ N(196; 19). Find: (a) P(X </= 223) (b) P(143 < X < 206)...
Let X ~ N(196; 19). Find: (a) P(X </= 223) (b) P(143 < X < 206) (c)  P(|X-196|> 30)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT