Question

In: Statistics and Probability

9. Let X ~ N(194; 24). Find: (a) P(X <= 218) (b) P(145 < X <...

9. Let X ~ N(194; 24). Find:

(a) P(X <= 218)

(b) P(145 < X < 213)

(c) The first quartile for X

(d) The third quartile for X

(e) the IQR for X

(f) P(|X-194|> 41)

10. A soft drink machine discharges an average of 345 ml per cup. The amount of drink is normally distributed with standard deviation of 30 ml. What fraction of cups will contain more than 376 ml? (Keep 4 decimals)

Solutions

Expert Solution


Related Solutions

Let X ∼ Bin(9, 0.2). a. Find P(X > 6). b. Find P(X ≥ 2). c.Find...
Let X ∼ Bin(9, 0.2). a. Find P(X > 6). b. Find P(X ≥ 2). c.Find P(2≤X<5) d. Find P(2 < X ≤ 5). e.Find μX f.Find σX2
Let X ~ N(190; 23). Find: (a) P(X <= 213) (b) P(148 < X < 202)...
Let X ~ N(190; 23). Find: (a) P(X <= 213) (b) P(148 < X < 202) (c) The first quartile for X (d) The third quartile for X (e) the IQR for X (f) P(|X-190|> 34
Let X ~ N(196; 19). Find: (a) P(X </= 223) (b) P(143 < X < 206)...
Let X ~ N(196; 19). Find: (a) P(X </= 223) (b) P(143 < X < 206) (c)  P(|X-196|> 30)
Let x be a binomial random variable with n=7 and p=0.7. Find the following. P(X =...
Let x be a binomial random variable with n=7 and p=0.7. Find the following. P(X = 4) P(X < 5) P(X ≥ 4)
Let X be a binomial random variable with n = 11 and p = 0.3. Find...
Let X be a binomial random variable with n = 11 and p = 0.3. Find the following values. (Round your answers to three decimal places.) (a)     P(X = 5) (b)     P(X ≥ 5) (c)     P(X > 5) (d)     P(X ≤ 5) (e)     μ = np μ = (f)    σ = npq σ =
Let x be a random variable that possesses a binomial distribution with p=0.5 and n=9. Using...
Let x be a random variable that possesses a binomial distribution with p=0.5 and n=9. Using the binomial formula or tables, calculate the following probabilities. Also calculate the mean and standard deviation of the distribution. Round solutions to four decimal places, if necessary. P(x≥3)= P(x≤8)= P(x=5)= μ= σ=
Let X Geom(p). For positive integers n, k define P(X = n + k | X...
Let X Geom(p). For positive integers n, k define P(X = n + k | X > n) = P(X = n + k) / P(X > n) : Show that P(X = n + k | X > n) = P(X = k) and then briefly argue, in words, why this is true for geometric random variables.
Let X represent a binomial random variable with n = 110 and p = 0.19. Find...
Let X represent a binomial random variable with n = 110 and p = 0.19. Find the following probabilities. (Do not round intermediate calculations. Round your final answers to 4 decimal places.) a. P(X ≤ 20)    b. P(X = 10) c. P(X > 30) d. P(X ≥ 25)
Let X represent a binomial random variable with n = 180 and p = 0.23. Find...
Let X represent a binomial random variable with n = 180 and p = 0.23. Find the following probabilities. (Do not round intermediate calculations. Round your final answers to 4 decimal places.) a. P(X less than or equal to 45) b. P(X=35) c. P(X>55) d. P (X greater than or equal to 50)
Let X represent a binomial random variable with n = 380 and p = 0.78. Find...
Let X represent a binomial random variable with n = 380 and p = 0.78. Find the following probabilities. (Round your final answers to 4 decimal places.) Probability a. P(X ≤ 300) b. P(X > 320) c. P(305 ≤ X ≤ 325) d. P( X = 290)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT