Question

In: Biology

Complement pathways _ Explain how classical pathway, Alternative pathway, lectin pathway and terminal pathway are activated...

Complement pathways _
Explain how classical pathway, Alternative pathway, lectin pathway and terminal pathway are activated to destroy bacterial cells?

Solutions

Expert Solution

Most of the proteins and glycoproteins that constitute the complement system are synthesized by hepatocytes. But significant amounts are also produced by tissue macrophages, blood monocytes, and epithelial cells of the genitourinary system and gastrointestinal tract. The three pathways of activation all generate homologous variants of the protease C3-convertase. The classical complement pathway typically requires antigen-antibody complexes for activation (specific immune response), whereas the alternative pathway can be activated by spontaneous complement component 3 (C3) hydrolysis, foreign material, pathogens, or damaged cells. The mannose-binding lectin pathway can be activated by C3 hydrolysis or antigens without the presence of antibodies (non-specific immune response). In all three pathways, C3-convertase cleaves and activates component C3, creating C3a and C3b, and causes a cascade of further cleavage and activation events. C3b binds to the surface of pathogens, leading to greater internalization by phagocytic cells by opsonization.

In the alternative pathway, C3b binds to Factor B. Factor D releases Factor Ba from Factor B bound to C3b. The complex of C3b(2)Bb is a protease which cleaves C5 into C5b and C5a. C5 convertase is also formed by the classical pathway when C3b binds C4b and C2b. C5a is an important chemotactic protein, helping recruit inflammatory cells. C3a is the precursor of an important cytokine (adipokine) named ASP (although this is not universally accepted and is usually rapidly cleaved by carboxypeptidase B. Both C3a and C5a have anaphylatoxin activity, directly triggering degranulation of mast cells as well as increasing vascular permeability and smooth muscle contraction.[6] C5b initiates the membrane attack pathway, which results in the membrane attack complex (MAC), consisting of C5b, C6, C7, C8, and polymeric C9.[7] MAC is the cytolytic endproduct of the complement cascade; it forms a transmembrane channel, which causes osmotic lysis of the target cell. Kupffer cells and other macrophage cell types help clear complement-coated pathogens. As part of the innate immune system, elements of the complement cascade can be found in species earlier than vertebrates; most recently in the protostome horseshoe crab species, putting the origins of the system back further than was previously thought.

Classical pathway

The classical pathway is triggered by activation of the C1-complex. The C1-complex is composed of 1 molecule of C1q, 2 molecules of C1r and 2 molecules of C1s, or C1qr2s2. This occurs when C1q binds to IgM or IgG complexed with antigens. A single pentameric IgM can initiate the pathway, while several, ideally six, IgGs are needed. This also occurs when C1q binds directly to the surface of the pathogen. Such binding leads to conformational changes in the C1q molecule, which leads to the activation of two C1r molecules. C1r is a serine protease. They then cleave C1s (another serine protease). The C1r2s2 component now splits C4 and then C2, producing C4a, C4b, C2a, and C2b (historically, the larger fragment of C2 was called C2a but is now referred to as C2b). C4b and C2a bind to form the classical pathway C3-convertase (C4b2a complex), which promotes cleavage of C3 into C3a and C3b. C3b later joins with C4b2a to make C5 convertase (C4b2a3b complex).

Alternative pathway

The alternative pathway is continuously activated at a low level, analogous to a car engine at idle, as a result of spontaneous C3 hydrolysis due to the breakdown of the internal thioester bond (C3 is mildly unstable in aqueous environment). The alternative pathway does not rely on pathogen-binding antibodies like the other pathways.[2] C3b that is generated from C3 by a C3 convertase enzyme complex in the fluid phase is rapidly inactivated by factor H and factor I, as is the C3b-like C3 that is the product of spontaneous cleavage of the internal thioester. In contrast, when the internal thioester of C3 reacts with a hydroxyl or amino group of a molecule on the surface of a cell or pathogen, the C3b that is now covalently bound to the surface is protected from factor H-mediated inactivation. The surface-bound C3b may now bind factor B to form C3bB. This complex in the presence of factor D will be cleaved into Ba and Bb. Bb will remain associated with C3b to form C3bBb, which is the alternative pathway C3 convertase.[

The C3bBb complex is stabilized by binding oligomers of factor P (properdin). The stabilized C3 convertase, C3bBbP, then acts enzymatically to cleave much more C3, some of which becomes covalently attached to the same surface as C3b. This newly bound C3b recruits more B, D and P activity and greatly amplifies the complement activation. When complement is activated on a cell surface, the activation is limited by endogenous complement regulatory proteins, which include CD35, CD46, CD55 and CD59, depending on the cell. Pathogens, in general, don't have complement regulatory proteins (there are many exceptions, which reflect adaptation of microbial pathogens to vertebrate immune defenses). Thus, the alternative complement pathway is able to distinguish self from non-self on the basis of the surface expression of complement regulatory proteins. Host cells don't accumulate cell surface C3b (and the proteolytic fragment of C3b called iC3b) because this is prevented by the complement regulatory proteins, while foreign cells, pathogens and abnormal surfaces may be heavily decorated with C3b and iC3b. Accordingly, the alternative complement pathway is one element of innate immunity.

Once the alternative C3 convertase enzyme is formed on a pathogen or cell surface, it may bind covalently another C3b, to form C3bBbC3bP, the C5 convertase. This enzyme then cleaves C5 to C5a, a potent anaphylatoxin, and C5b. The C5b then recruits and assembles C6, C7, C8 and multiple C9 molecules to assemble the membrane attack complex. This creates a hole or pore in the membrane that can kill or damage the pathogen or cell.

Lectin pathway

The lectin pathway is homologous to the classical pathway, but with the opsonin, mannose-binding lectin (MBL), and ficolins, instead of C1q. This pathway is activated by binding of MBL to mannose residues on the pathogen surface, which activates the MBL-associated serine proteases, MASP-1, and MASP-2 (very similar to C1r and C1s, respectively), which can then split C4 into C4a and C4b and C2 into C2a and C2b. C4b and C2b then bind together to form the classical C3-convertase, as in the classical pathway. Ficolins are homologous to MBL and function via MASP in a similar way. Several single-nucleotide polymorphisms have been described in M-ficolin in humans, with effect on ligand-binding ability and serum levels. Historically, the larger fragment of C2 was named C2a, but it is now referred to as C2b. In invertebrates without an adaptive immune system, ficolins are expanded and their binding specificities diversified to compensate for the lack of pathogen-specific recognition molecules.


Related Solutions

Explain how classical pathway, alternative pathway, lectin pathway and terminal pathway destroy bacterial cells in detail.
Explain how classical pathway, alternative pathway, lectin pathway and terminal pathway destroy bacterial cells in detail.
Diagram the classical pathway of complement activation. Include terminal pathway. Provide a brief description of major...
Diagram the classical pathway of complement activation. Include terminal pathway. Provide a brief description of major events at each step
Describe the classical pathway of complement activation in the absence of antibodies and how it is...
Describe the classical pathway of complement activation in the absence of antibodies and how it is used during an innate immune response to clear the pathogen.
Briefly describe the three alternative complement pathways.
Briefly describe the three alternative complement pathways.
Describe the differences between the classical and the lectin pathway of the complement system?
Describe the differences between the classical and the lectin pathway of the complement system?
Which of the three complement pathways will be activated? Why? ( compare between people tested positive...
Which of the three complement pathways will be activated? Why? ( compare between people tested positive for COVID-19 with symptoms and people tested positive for COVID-19 without symptoms )
Which of the following statements does not describe the classical activation pathway of complement? A) Initiation...
Which of the following statements does not describe the classical activation pathway of complement? A) Initiation of the classical pathway of the complement system requires formation of an antibody antigen complex. B) The classical pathway results in complement activation of the inflammatory response only. C) The classical pathway converges with the alternative pathway, resulting in the same possible complement-mediated immune responses. D) The classical pathway is an example of an adaptive immune response.
The intrinsic pathway of coagulation is activated by the The intrinsic pathway of coagulation is activated...
The intrinsic pathway of coagulation is activated by the The intrinsic pathway of coagulation is activated by the release of heparin from the liver. sticking of platelets to damaged tissue. activation of proenzymes exposed to collagen. release of tissue factor (Factor III) by damaged endothelium. conversion of prothrombin to thrombin.
Explain in cleaar detail: Trigeminal sensory pathways : Discriminative touch pathway, Pain and temperature pathway
Explain in cleaar detail: Trigeminal sensory pathways : Discriminative touch pathway, Pain and temperature pathway
Explain how the apoptotic pathway can be activated when TNF binds to its receptor? Name and...
Explain how the apoptotic pathway can be activated when TNF binds to its receptor? Name and explain any relevant proteins. Name a cancer specific pathway drug/treatment and explain its mechanism.  
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT