Question

In: Statistics and Probability

Solve it by R Use the ‘cement’ dataset in ‘MASS’ package to answer the question. (1)...

Solve it by R

Use the ‘cement’ dataset in ‘MASS’ package to answer the question.

(1) Conduct the multiple linear regression, regress y value on x1, x2, x3 and x4 (without intercept). Report the estimated coefficients. Which predictor variables have strong linear relationship with response variable y at significance level 0.05?

(2) What is the adjusted R square of your regression? What is the interquartile range (IQR) of the residuals from your regression?

(3) Conduct a best subset regression (with intercept) with the function ‘regsubsets’ and find the best model with only two independent variables.

Solutions

Expert Solution

Hope this was helpful. Please leave back any comment.


Related Solutions

I need this in R code please: Use the dataset ’juul’ in package ’ISwR’ to answer...
I need this in R code please: Use the dataset ’juul’ in package ’ISwR’ to answer the question. (1) Conduct one-way ANOVA test to test if the mean of igf1 of each level of tanner are the same? (2) What is the mean of igf1 in each level of tanner? (3) If there is any difference, which ones appear to be different? (Use pairwise t test for each pair of level with bonferroni method)
Solve it by R Use the “d_logret_6stocks” dataset to answer the questions. Test by using α=...
Solve it by R Use the “d_logret_6stocks” dataset to answer the questions. Test by using α= .01. (General Motor: GenMotor). (1) Regress the return of General Motor on the returns of Citigroup (with intercept). Report the estimated coefficients. Is there any evidence to show strong linear relationship between these two variables at significance level 5%? (2) Suppose we “know” the return of Citigroup tomorrow is 0.05, what is the predicted return of General Motor tomorrow? (3) Compute the correlation of...
The dataset ’anorexia’ in the MASS package in R-Studio contains data for an anorexia study. In...
The dataset ’anorexia’ in the MASS package in R-Studio contains data for an anorexia study. In the study, three treatments (Treat) were applied to groups of young female anorexia patients, and their weights before (Prewt) and after (Postwt) treatment were recorded. The three treatments adminstered were no treatment (Cont), Cognitive Behavioural treatment (CBT), and family treatment (FT). Determine at the 5% significance level if there is a difference in mean weight gain between those receiving no treatment and those receiving...
The dataset ’anorexia’ in the MASS package in R-Studio contains data for an anorexia study. In...
The dataset ’anorexia’ in the MASS package in R-Studio contains data for an anorexia study. In the study, three treat- ments (Treat) were applied to groups of young female anorexia patients, and their weights before (Prewt) and after (Postwt) treatment were recorded. The three treatments adminstered were no treatment (Cont), Cognitive Behavioural treatment (CBT), and family treatment (FT). Determine at the 5% significance level if there is a difference in mean weight gain between those receiving no treatment and those...
2. The dataset ’anorexia’ in the MASS package in R-Studio contains data for an anorexia study....
2. The dataset ’anorexia’ in the MASS package in R-Studio contains data for an anorexia study. In the study, three treatments (Treat) were applied to groups of young female anorexia patients, and their weights before (Prewt) and after (Postwt) treatment were recorded. The three treatments adminstered were no treatment (Cont), Cognitive Behavioural treatment (CBT), and family treatment (FT). Determine at the 5% significance level if Cognitive Behavioral treatment is effective in helping patients gain weight. Perform all necessary steps for...
1. Load the cpus dataset from the MASS package. Use syct, mmin , mmax , cach...
1. Load the cpus dataset from the MASS package. Use syct, mmin , mmax , cach , chmin, chmax as the predictors (independent variables) to predict performance (perf) Perform the best subset selection in order to choose the best predictors from the above predictors. What is the best model obtained according to Cp, BIC, and adjusted R2? Show some plots to provide evidence for your answer, and report the coefficients of the best model obtained for each criterion. Repeat using...
1. The dataset prostate (in R package ”faraway”) is from a study on 97 men with...
1. The dataset prostate (in R package ”faraway”) is from a study on 97 men with prostatecancer who were due to receive a radical prostatectomy.Fit a model withlpsa(y) as the response variable andlcavol(x) as the predictor andanswer the following question: •Calculate and plot the 90%confidenceandpredictionbands. Which type ofintervals are wider?
Please use Statistical Software R Consider a dataset called fandango in fivethirtyeight package: Identify the Top...
Please use Statistical Software R Consider a dataset called fandango in fivethirtyeight package: Identify the Top 5 best rated and Top 5 worst rated movies based on rottentomatoes. Identify the Top 5 best rated and Top 5 worst rated movies based on the average of three users’ scores (rottentomatoes_user, metacritic_user, and imdb). Visualize the difference between Fandango stars and actual Fandango ratings. Comment on what you see. Construct a formal test to see if there is a significant difference between...
ANSWER USING R CODE Using the dataset 'LakeHuron' which is a built in R dataset describing...
ANSWER USING R CODE Using the dataset 'LakeHuron' which is a built in R dataset describing the level in feet of Lake Huron from 1872- 1972. To assign the values into an ordinary vector,x, we can do the following 'x <- as.vector(LakeHuron)'. From there, we can access the data easily. Assume the values in X are a random sample from a normal population with distribution X. Also assume the X has an unknown mean and unknown standard deviation. With this...
Use the “d_logret_6stocks” dataset to answer the questions. (General Motor: GenMotor)(using R) (1) Regress the return...
Use the “d_logret_6stocks” dataset to answer the questions. (General Motor: GenMotor)(using R) (1) Regress the return of General Motor on the returns of Citigroup with intercept and without intercept, respectively. Report the estimated coefficients. (2) Generate an ANOVA table to conclude if regression effects are significant. (3) Compute the correlation of General Motor and Citigroup, and test if their correlation is zero. (4) Test if the proportion of returns of Citigroup greater than Pfizer is 0.6. dataset below Date   Pfizer  ...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT