In: Statistics and Probability
Two different plant fertilizers are available. Set up an experiment to determine which will grow the largest plant by answering the following questions.
The yield data (kg/plot) were collected from 20 plots. Each fertilizer (A or B) was randomly assigned to 10 plots.
Fertilizer A | 17.5 | 17.9 | 18.2 | 16.9 | 17.2 | 17.5 | 17.3 | 18.9 | 16.8 | 17.1 |
Fertilizer B | 18.4 | 17.9 | 18.2 | 17.6 | 17.6 | 18.8 | 18.1 | 17.4 | 17.8 | 17.6 |
f. Conduct the appropriate hypothesis testing. Report the test-statistics and p-values.
g. Make a conclusion based on a 10% significance level. Briefly explain how do you make this conclusion.
f.
R code:
Fertilizer_A=c(17.5,17.9,18.2,16.9,17.2,17.5,17.3,18.9,16.8,17.1)
Fertilizer_B=c(18.4,17.9,18.2,17.6,17.6,18.8,18.1,17.4,17.8,17.6)
shapiro.test(Fertilizer_A)
shapiro.test(Fertilizer_B)
Output:
> shapiro.test(Fertilizer_A)
Shapiro-Wilk normality test
data: Fertilizer_A
W = 0.91367, p-value = 0.3072
> shapiro.test(Fertilizer_B)
Shapiro-Wilk normality test
data: Fertilizer_B
W = 0.93227, p-value = 0.4706
Since p-values for both samples are greater than 0.10 so we can
assume these two samples come from two independent normal
populations.
R code:
Fertilizer_A=c(17.5,17.9,18.2,16.9,17.2,17.5,17.3,18.9,16.8,17.1)
Fertilizer_B=c(18.4,17.9,18.2,17.6,17.6,18.8,18.1,17.4,17.8,17.6)
var.test(Fertilizer_A, Fertilizer_B, alternative = "two.sided")
Output:
F test to compare two variances
data: Fertilizer_A and Fertilizer_B
F = 2.1954, num df = 9, denom df = 9, p-value = 0.257
alternative hypothesis: true ratio of variances is not equal to
1
95 percent confidence interval:
0.5453119 8.8387583
sample estimates:
ratio of variances
2.195423
Since p-value = 0.257>0.1 so we can assume two variances are
equal.
R code:
Fertilizer_A=c(17.5,17.9,18.2,16.9,17.2,17.5,17.3,18.9,16.8,17.1)
Fertilizer_B=c(18.4,17.9,18.2,17.6,17.6,18.8,18.1,17.4,17.8,17.6)
t.test(Fertilizer_A,Fertilizer_B,, var.equal=TRUE,alternative
="two.sided",conf.level = 0.90)
Output:
Two Sample t-test
data: Fertilizer_A and Fertilizer_B
t = -1.6669, df = 18, p-value = 0.1128
alternative hypothesis: true difference in means is not equal to
0
90 percent confidence interval:
-0.83652325 0.01652325
sample estimates:
mean of x mean of y
17.53 17.94
Value of test statistic=-1.6669, p-value=0.1128.
g. Since p-value>0.10 so there is insignificant difference between Fertilizer A and Fertilizer B.