In: Statistics and Probability
Consider the isatin yield experiment below. Set up the 2^4 experiment in this problem in two blocks with ABCD confounded. Analyze the data from this design. Is the block effect large?. Show the steps to perform this in Minitab.
factor | low | high |
A:acid strength (%) | 87 | 93 |
B:Reaction time (min) | 15 | 30 |
C:Amount of acid (ml) | 35 | 45 |
D:reaction temperature (c) | 60 | 70 |
A | B | C | D | yield |
-1 |
-1 | -1 | -1 | 6.08 |
1 | -1 | -1 | -1 | 6.04 |
-1 | 1 | -1 | -1 | 6.53 |
1 | 1 | -1 | -1 | 6.43 |
-1 | -1 | 1 | -1 | 6.31 |
1 | -1 | 1 | -1 | 6.09 |
-1 | 1 | 1 | -1 | 6.12 |
1 | 1 | 1 | -1 | 6.36 |
-1 | -1 | -1 | 1 | 6.79 |
1 | -1 | -1 | 1 | 6.68 |
-1 | 1 | -1 | 1 | 6.73 |
1 | 1 | -1 | 1 | 6.08 |
-1 | -1 | 1 | 1 | 6.77 |
1 | -1 | 1 | 1 | 6.38 |
-1 | 1 | 1 | 1 | 6.49 |
1 | 1 | 1 | 1 | 6.23 |
Consider the 2^4 isatin yield experiment in two blocks with ABCD confounded.
factor | low | high |
A:acid strength (%) | 87 | 93 |
B:Reaction time (min) | 15 | 30 |
C:Amount of acid (ml) | 35 | 45 |
D:reaction temperature (c) | 60 | 70 |
Using Minitab:
Full Factorial Design
Factors: 4 Base Design: 4, 16 Resolution with blocks: V
Runs: 16 Replicates: 1
Blocks: 2 Center pts (total): 0
Block Generators: ABCD
Alias Structure
I
Blk = ABCD
A
B
C
D
AB
AC
AD
BC
BD
CD
ABC
ABD
ACD
BCD
Factorial Regression: Yield versus Blocks, A, B, C, D
Analysis of Variance:
Source DF Adj SS Adj MS
Model 15 1.04484 0.069656
Blocks 1 0.00141 0.001406
Linear 4 0.47113 0.117781
A 1 0.14631 0.146306
B 1 0.00181 0.001806
C 1 0.02326 0.023256
D 1 0.29976 0.299756
2-Way Interactions 6 0.38139 0.063565
A*B 1 0.00001 0.000006
A*C 1 0.00456 0.004556
A*D 1 0.10401 0.104006
B*C 1 0.01756 0.017556
B*D 1 0.25251 0.252506
C*D 1 0.00276 0.002756
3-Way Interactions 4 0.19092 0.047731
A*B*C 1 0.08851 0.088506
A*B*D 1 0.04101 0.041006
A*C*D 1 0.00016 0.000156
B*C*D 1 0.06126 0.061256
Error 0 * *
Total 15 1.04484
Coded Coefficients:
SE
Term Effect Coef
Constant 6.382
Blocks
1 -0.009375
A -0.19125 -0.09563
B -0.02125 -0.01062
C -0.07625 -0.03813
D 0.2738 0.1369
A*B -0.001250 -0.000625
A*C 0.03375 0.01688
A*D -0.16125 -0.08062
B*C -0.06625 -0.03312
B*D -0.2512 -0.1256
C*D -0.02625 -0.01313
A*B*C 0.14875 0.07438
A*B*D -0.10125 -0.05062
A*C*D -0.006250 -0.003125
B*C*D 0.12375 0.06187
Regression Equation in Uncoded Units:
Yield = 6.382 - 0.09563 A - 0.01062 B - 0.03813 C + 0.1369 D -
0.000625 A*B + 0.01688 A*C
- 0.08062 A*D - 0.03312 B*C - 0.1256 B*D - 0.01313 C*D + 0.07438
A*B*C
- 0.05062 A*B*D - 0.003125 A*C*D + 0.06187 B*C*D
Equation averaged over blocks.
Effects Pareto for Yield:
## The block effect is not large.