Question

In: Advanced Math

Suppose an electrical circuit contains a 1 H inductor, a 10 Ω resistor and a capacitor...

Suppose an electrical circuit contains a 1 H inductor, a 10 Ω resistor and a capacitor rated at 1/7 F. If the circuit is hooked up to an alternating voltage source described by E(t) = 68 cost V and initially q(0) = 1 C and i(0) = 0 A, find a function that describes the charge as a function of time.  Lq'' + Rq' + q/C = E(t).  

Please show work using a complementary and particular solution if possible.

Solutions

Expert Solution


Related Solutions

A series circuit contains a 3.00-H inductor, a 2.40-μF capacitor, and a 25.0-Ω resistor connected to...
A series circuit contains a 3.00-H inductor, a 2.40-μF capacitor, and a 25.0-Ω resistor connected to a 120-V (RMS) source of variable frequency. Find the power delivered to the circuit when the frequency of the source is each of the following. (a) the resonance frequency (b) one-half the resonance frequency (c) one-fourth the resonance frequency (d) two times the resonance frequency (e) four times the resonance frequency From your calculations, can you draw a conclusion about the frequency at which...
One RL series circuit contains the resistor R1= 2 Ω and inductor L = 10 H....
One RL series circuit contains the resistor R1= 2 Ω and inductor L = 10 H. (i) Write the first order differential equation for this circuit in time constant form. (ii) Determine the time constant for this system (iii) Calculate the steady state gain of the system. (iv) Determine the time constant and steady state gain when the inductance is doubled (v) In the context of positioning of poles on the S-plane, what does the ‘real part’ represent and what...
An RLC series circuit consists of a 450-Ω resistor, a 3.00-mF capacitor, and a 1.00-H inductor....
An RLC series circuit consists of a 450-Ω resistor, a 3.00-mF capacitor, and a 1.00-H inductor. The circuit is driven by a power source that oscillates at 20.0 Hz and has an ε_rms value of 90.0 V . The power source is switched on at t = 0 and at that instant the emf is at its maximum value. A) Calculate the power supplied at t = 0.0200 s. B) Calculate the power supplied at t = 0.0375 s. C)...
An RLC series circuit consists of a 450-Ω resistor, a 3.00-mF capacitor, and a 1.00-H inductor....
An RLC series circuit consists of a 450-Ω resistor, a 3.00-mF capacitor, and a 1.00-H inductor. The circuit is driven by a power source that oscillates at 20.0 Hz and has an Erms value of 30.0 V . The power source is switched on at t = 0 and at that instant the emf is at its maximum value. Part A Calculate the power supplied at t = 0.0200 s. Part B Calculate the power supplied at t = 0.0375...
A 215 Ω resistor, a 0.900 H inductor, and a 6.50 μF capacitor are connected in...
A 215 Ω resistor, a 0.900 H inductor, and a 6.50 μF capacitor are connected in series across a voltage source that has voltage amplitude 29.5 Vand an angular frequency of 220 rad/s . a) What is v at t= 18.0 ms ? ANS: -27.7V b) What is vR at t= 18.0 ms ? c)What is vL at t= 18.0 ms ? d)What is  vC at t= 18.0 ms ? e)What is VR? f)What is VC? g)What is VL?
A 197 Ω resistor, a 0.925 H inductor, and a 5.75 μF capacitor are connected in...
A 197 Ω resistor, a 0.925 H inductor, and a 5.75 μF capacitor are connected in series across a voltage source that has voltage amplitude 31.5 V and an angular frequency of 230 rad/s. What is v at t= 19.0 ms? What is vR at t= 19.0 ms? What is vL at t= 19.0 ms? What is  vC at t= 19.0 ms? Compare vC+vL+vR and v at this instant. What is VR? What is VC? What is VL? Compare V and...
A 190 Ω resistor, a 0.875 H inductor, and a 5.75 μF capacitor are connected in...
A 190 Ω resistor, a 0.875 H inductor, and a 5.75 μF capacitor are connected in series across a voltage source that has voltage amplitude 32.0 V and an angular frequency of 270 rad/s. A. What is v at t= 22.0 ms ? B. What is vR at t= 22.0 ms ? C. What is vL at t= 22.0 ms ? D. What is vC at t= 22.0 ms ? E. Compare vC+vL+vR and v at this instant: vC+vL+vR<v vC+vL+vR>v...
A 193 Ω resistor, a 0.750 H inductor, and a 6.00 μF capacitor are connected in...
A 193 Ω resistor, a 0.750 H inductor, and a 6.00 μF capacitor are connected in series across a voltage source that has voltage amplitude 28.5 V and an angular frequency of 245 rad/s . What is vR at t= 18.0 ms ? What is vL at t= 18.0 ms ? What is vC at t= 18.0 ms ?
You have a 200 Ω resistor, a 0.400-H inductor. Suppose you take the resistor and inductor...
You have a 200 Ω resistor, a 0.400-H inductor. Suppose you take the resistor and inductor and make a series circuit with a voltage source that has voltage amplitude 30.0V and an angular frequency of 250 rad/s. Parts A, B, C For this R-L circuit graph v, vR, and vL versus t for t = 0 to t = 50.0 ms. The current is given by i=Icosωt, so v=Vcos(ωt+ϕ). Part D What are v, vR, and vL at t =...
A series AC circuit contains a resistor, an inductor of 240 mH, a capacitor of 5.40...
A series AC circuit contains a resistor, an inductor of 240 mH, a capacitor of 5.40 µF, and a source with ΔVmax = 240 V operating at 50.0 Hz. The maximum current in the circuit is 170 mA. (a) Calculate the inductive reactance. _________________Ω (b) Calculate the capacitive reactance. ______________-Ω (c) Calculate the impedance. _______________kΩ (d) Calculate the resistance in the circuit. ______________kΩ (e) Calculate the phase angle between the current and the source voltage. _______________°
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT