Question

In: Physics

A rocket ship is launched from rest from a space station. Its destinations 1.0 x 10^11...

A rocket ship is launched from rest from a space station. Its destinations 1.0 x 10^11 m away. The ship is programmed to accelerate at 7.4 m/s^2 for 12 hours. After 12 hours, the ship will travel at constant velocity until it comes within 1.0 x 10^10 m of its destination. Then, it will fire its retrorockets to land safely.

Event 1: t= , r= , v= ,

Event 2: t= , r= , v= ,

Event 3: t= , r= , v= ,

Event 4: t= , r= , v= ,

a(12)= , a(23)= , a(34)=

Mathematical Analysis?

Solutions

Expert Solution


Related Solutions

A rocket is launched from rest and reaches a position of (65m, 185m) and a velocity...
A rocket is launched from rest and reaches a position of (65m, 185m) and a velocity of (195m/s, 555m/s) when it runs out of fuel. From this time, tbo, it flies a projectile motion path. Find the maximum height above the ground the rocket achieves after running out of fuel Find the time t and position x of the rocket when it hits the ground.
A rocket is launched from rest and moves in a straight line at 65.0 degrees angle...
A rocket is launched from rest and moves in a straight line at 65.0 degrees angle above the horizontal with an acceleration of 42.0m/s square. After 32.0 s of powered flight, the engines shut off and the rocket follows a parabolic path back to Earth. Find the time of flight from launching to impact. What is the maximum altitude reached? What is the distance from launch pad to impactpoint? Ignore the variation in g with height
At the base of a vertical cliff, a model rocket, starting from rest, is launched upwards...
At the base of a vertical cliff, a model rocket, starting from rest, is launched upwards at t = 0 with a time-varying acceleration given by ay(t) = A - Bt (3) where A and B are positive constants. Also at t = 0, a small stone is released from rest from the top of the cliff at a height h directly above the rocket. (This heighth is higher than the maximum height reached by the rocket.) The stone hits...
The drive propeller of a ship starts from rest and accelerates at 2.99 x 10-3 rad/s2...
The drive propeller of a ship starts from rest and accelerates at 2.99 x 10-3 rad/s2 for 2.86 x 103 s. For the next 1.90 x 103 s the propeller rotates at a constant angular speed. Then it decelerates at 2.61 x 10-3 rad/s2 until it slows (without reversing direction) to an angular speed of 2.31 rad/s. Find the total angular displacement of the propeller.
The drive propeller of a ship starts from rest and accelerates at 2.56 x 10-3 rad/s2...
The drive propeller of a ship starts from rest and accelerates at 2.56 x 10-3 rad/s2 for 2.48 x 103 s. For the next 1.47 x 103 s the propeller rotates at a constant angular speed. Then it decelerates at 2.80 x 10-3 rad/s2 until it slows (without reversing direction) to an angular speed of 2.88 rad/s. Find the total angular displacement of the propeller.
[10 pts] A model rocket is launched from a raised platform at a speed of 120...
[10 pts] A model rocket is launched from a raised platform at a speed of 120 feet per second. Its height in feet is given by h(t) = -16t^2 +120 t + 32 where t represents seconds after launch. a. [3 pts] After how many second does the object reach its maximum height? Use the vertex formula. b. [2 pts] Use the previous result to find the maximum height reached by the rocket. c. [5 pts] After how many second...
A test rocket is launched, starting on the ground, from rest, by accelerating it along an incline with constant acceleration "a". The incline ha
A test rocket is launched, starting on the ground, from rest, by accelerating it along an incline with constant acceleration "a". The incline has length "L", and it rises at ? degrees above the horizontal. At the instant the rocket leaves the incline, its engines turn off and it is subject only to gravity, g?+9.81m/s2.  (Air resistance can be ignored). Taking the usual x-y coordinate system, with an origin at the top edge of the incline,  (a)what is the position vector when the rocket is at its highest point?  (b)What is the position vector when the rocket is on its way back down and once again at the same height as the top edge of the incline?  Your symbolic answer should only depend on a, L,?, g, and/or numerical factors Asked by
1. A model rocket is launched straight upward with an initial space of 50.0 m/s. It...
1. A model rocket is launched straight upward with an initial space of 50.0 m/s. It accelerates with constant upward acceleration of 2.00 m/s^2 until its engines stop at an altitude of 150m. (a) how long does it take for the engines to stop? (b) what is the velocity of the rocket when its engine stop? (c) draw a graph for acceleration versus time (be careful to label your axis correctly). (d) what is the maximum height reached by the...
An astronaut is floating inside the international space station at rest--and since there are no other...
An astronaut is floating inside the international space station at rest--and since there are no other external forces she can rely on to change her state of motion--she decides to throw her jacket across the room. If her mass is 66.9kg and she throws the 1.1kg jacket at 14.7 m/s -- what is her recoil speed?
A rocket is fired from rest at x=0 and travels along a parabolic trajectory described by...
A rocket is fired from rest at x=0 and travels along a parabolic trajectory described by y2=[120(10^3)x]m. Part A If the x component of acceleration is ax=(1/4t^2)m/s^2, where t is in seconds, determine the magnitude of the rocket's velocity when t = 8 s. Express your answer using three significant figures and include the appropriate units. v = SubmitRequest Answer Part B Determine the magnitude of the rocket's acceleration when t = 8 s. Express your answer using three significant...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT