Question

In: Math

[10 pts] A model rocket is launched from a raised platform at a speed of 120...

[10 pts] A model rocket is launched from a raised platform at a speed of 120 feet per second. Its height in feet is given by h(t) = -16t^2 +120 t + 32 where t represents seconds after launch.

a. [3 pts] After how many second does the object reach its maximum height? Use the vertex formula.

b. [2 pts] Use the previous result to find the maximum height reached by the rocket.

c. [5 pts] After how many second does the rocket hit the ground?

Solutions

Expert Solution

The complete solution is provided in the attachments.


Related Solutions

A model rocket is launched straight upward with an initial speed of 42.0 m/s. It accelerates...
A model rocket is launched straight upward with an initial speed of 42.0 m/s. It accelerates with a constant upward acceleration of 2.50 m/s2 until its engines stop at an altitude of 160 m. (a) What can you say about the motion of the rocket after its engines stop?. (b) What is the maximum height reached by the rocket? (c) How long after liftoff does the rocket reach its maximum height? (d) How long is the rocket in the air?
a model rocket is launched straight upward with an innitial speed of 11.0 m/s. it accelerates...
a model rocket is launched straight upward with an innitial speed of 11.0 m/s. it accelerates with a constant upward acceleration of 22 m/s^2 until its engines stop 3.0 seconds later. it then continues on as a free fall particle until it hits the ground. (a) draw and label a diagram of the above and below information (b) find the velocity (in m/s ) of the rocket at the instant it runs out if fuel. (c)find the max height (in...
A rocket is launched at an angle of 60.0° above the horizontal with an initial speed...
A rocket is launched at an angle of 60.0° above the horizontal with an initial speed of 99 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 29.0 m/s2. At this time, its engines fail and the rocket proceeds to move as a projectile. Find the maximum altitude reached by the rocket. Find its total time of flight. Find its horizontal range.
A rocket is launched at an angle of 50.0° above the horizontal with an initial speed...
A rocket is launched at an angle of 50.0° above the horizontal with an initial speed of 95 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 29.0 m/s2. At this time, its engines fail and the rocket proceeds to move as a projectile. (a) Find the maximum altitude reached by the rocket. (b) Find its total time of flight. (c) Find its horizontal range. (c) Find its horizontal range.
A rocket is launched at an angle of 57.0° above the horizontal with an initial speed...
A rocket is launched at an angle of 57.0° above the horizontal with an initial speed of 103 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 28.0 m/s2. At this time, its engines fail and the rocket proceeds to move as a projectile. (a) Find the maximum altitude reached by the rocket. (b) Find its total time of flight. (c) Find its horizontal range.
A rocket is launched at an angle of 53.0° above the horizontal with an initial speed...
A rocket is launched at an angle of 53.0° above the horizontal with an initial speed of 98 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 31.0 m/s2. At this time, its engines fail and the rocket proceeds to move as a projectile. (a) Find the maximum altitude reached by the rocket. (b) Find its total time of flight. (c) Find its horizontal range.
At the base of a vertical cliff, a model rocket, starting from rest, is launched upwards...
At the base of a vertical cliff, a model rocket, starting from rest, is launched upwards at t = 0 with a time-varying acceleration given by ay(t) = A - Bt (3) where A and B are positive constants. Also at t = 0, a small stone is released from rest from the top of the cliff at a height h directly above the rocket. (This heighth is higher than the maximum height reached by the rocket.) The stone hits...
In Example 2.6, we considered a simple model for a rocket launched from the surface of...
In Example 2.6, we considered a simple model for a rocket launched from the surface of the Earth. A better expression for a rocket's position measured from the center of the Earth is given by y(t) = RE3/2 + 3 g 2 REt 2/3 where RE is the radius of the Earth (6.38 ✕ 106 m) and g is the constant acceleration of an object in free fall near the Earth's surface (9.81 m/s2). (a) Derive expressions for vy(t) and...
IP A fireworks rocket is launched vertically into the night sky with an initial speed of...
IP A fireworks rocket is launched vertically into the night sky with an initial speed of 42.2 m/s . The rocket coasts after being launched, then explodes and breaks into two pieces of equal mass 2.90 s later. Part A If each piece follows a trajectory that is initially at 45.0 ∘ to the vertical, what was their speed immediately after the explosion? Part B What is the velocity of the rocket's center of mass before the explosion? Part C...
A rocket, launched from the Earth, shuts off its engines when its speed is 4.90 km/s....
A rocket, launched from the Earth, shuts off its engines when its speed is 4.90 km/s. It reaches a maximum altitude H of 2790 km before it falls back to Earth. At what altitude l did the rocket's engines shut off? The mass, radius, and escape speed of the Earth are 5.972 x 1024 kg, 6.371 x 106 m, and 11.18 km/s respectively (4 points)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT