Question

In: Electrical Engineering

A4-pole,250V, 50Hz single phase induction motor has rotor frequency 2 Hz, in starting has following parameters:...

A4-pole,250V, 50Hz single phase induction motor has rotor frequency 2 Hz, in starting has following parameters: main winding Rm=2 Ω ,Xm=4 Ω and staring winding : Rs =4 Ω , XLS=2 Ω ,Xcs=8 Ω. Find : speed of motor, Im , IS, θm θs, α and p.f.

Solutions

Expert Solution

for this problem, please follow all above steps written,thank you


Related Solutions

The parameters of a 3-phase, 4-pole, 50 Hz, Y-connected, wound-rotor induction motor are listed below. These...
The parameters of a 3-phase, 4-pole, 50 Hz, Y-connected, wound-rotor induction motor are listed below. These are the default values of the “Asynchronous Machine” model in MATLAB Simulink. r1=0.5968 ?; r2=0.6258 ?; L1=0.0003495 H; L2=0.005473 H; Lm=0.0354 H; Stator line voltage = 400 V rms. The motor for rotor speeds nm= 0 to 1500 rpm. X1= 0.1097 ohm, X2= 1.719 ohm , Xm= 11.12 ohm, RTH = 0.5853 , XTH = 0.1395 and VTH = 230.82 V. Suppose the motor...
A 400V, three phase, 50Hz, 4 pole induction motor is operating at a per unit slip...
A 400V, three phase, 50Hz, 4 pole induction motor is operating at a per unit slip of 40KW from the suppply. Under these conditions stator losses amount to 2.2 KW and rotational losses due to friction and windage amount to 1.4KW. Calculate the net horsepower and torque developed.
A 3 phase 460 V, 60 Hz, 4 pole, delta connected induction motor has the following...
A 3 phase 460 V, 60 Hz, 4 pole, delta connected induction motor has the following equivalent circuit parameters. Rs = 0.42 Ω, Rr = 0.23 Ω, Xs = Xr = 0.82 Ω. Xm = 22 Ω. The no load loss = 60 W and may be assumed constant. The rotor speed is 1750 rpm. Use the approximate equivalent circuit ( i.e. the Xm branch is at the very left of the circuit) determine the following a. the synchronous speed...
A 400V, 2 pole, 50 Hz, three-phase induction motor is drawing 60 A at 0.85 PF...
A 400V, 2 pole, 50 Hz, three-phase induction motor is drawing 60 A at 0.85 PF lagging. The stator copper losses are 2 kW, the stator core losses are 1.8 kW and rotor copper losses are 700 W. The friction and windage losses are 600 W, the stray loss 100 W, and rotor core loss 100 W. Find the following quantities: a. The air gap power. b. The developed mechanical power. c. The output power. d. The efficiency of the...
A 60-Hz, 208-V, 2 pole wye connected induction motor is rated at 15hp. The equivalent parameters...
A 60-Hz, 208-V, 2 pole wye connected induction motor is rated at 15hp. The equivalent parameters are as follows: RS = 0.2 Ω RR’ = 0.120 Ω XS = XR’ = 0.41 Ω Xm = 15 Ω The machine has negligible miscellaneous losses but experiences mechanical loss and core loss of 250 W and 180 W, respectively. For a slip of 5 %, determine a) The line current. (44.8  -25.5  A) b) The stator copper losses (1.205 kW)...
A 3-phase, 380 V, 50 Hz , 6 pole, Y-connected induction motor has R1 = 0.1...
A 3-phase, 380 V, 50 Hz , 6 pole, Y-connected induction motor has R1 = 0.1 W , X1 = 0.4 W, R2’ = 0.12 W , X2’ = 0.4 W, Xm = 20 W , Pr = 1 kW. The motor is operated at 970 rpm what is the efficiency?
Q3) A three-phase, Y-connected, 220 V, 13 kW, 60 Hz, six-pole induction motor has the following...
Q3) A three-phase, Y-connected, 220 V, 13 kW, 60 Hz, six-pole induction motor has the following parameter values in Ω/phase referred to the stator: R1 = 0.3 Ω. R2' = 0.15 Ω X1 = 0.5 Ω. X2'= 0.21 Ω Xm = 13.25 Ω The total rotational losses are 450 W. The core loss is lumped in with the rotational losses. For a slip of 0.02, and based on approximate equivalent circuit, determine: (i) The rotor speed. (ii) The stator current....
A 440 V 4-pole 3 phase 50 Hz slip ring induction motor has its stator winding...
A 440 V 4-pole 3 phase 50 Hz slip ring induction motor has its stator winding mesh connected and its rotor winding star connected. The standstill voltage measured between slip rings with the rotor open –circuited is 218 V. the stator resistance per phase is 0.6Ω and the stator reactance per phase is 3Ω. The rotor resistance per phase is 0.05Ω and the rotor reactance per phase is 0.25Ω. Calculate the maximum torque and the slip at which it occurs....
A 6-pole, 50 Hz, 3-phase induction motor running on full load develops a useful torque of...
A 6-pole, 50 Hz, 3-phase induction motor running on full load develops a useful torque of 160 Nm when the rotor emf makes 120 complete cycles per minute. The windage and friction loss is 1005.30 Watt. It is assumed; the core loss is lumped together with the windage and friction loss. The total stator loss is given to be 800 Watt. Compute: a) Shaft power output, b) The copper loss in the rotor winding,c) The input power to the motor, and d) The...
A 400 V,50 Hz, six-pole three-phase induction motor drives a constant load of 140 N.m. The...
A 400 V,50 Hz, six-pole three-phase induction motor drives a constant load of 140 N.m. The motor has the following parameters ?1=0.294 Ω ?1=1.39 ?? ??=41 ?? ?2′=0.156 Ω ?2′=0.74 ?? 1) Starting. Calculate the following: i) Motor starting current. ii) Motor starting torque. 2) Maximum operating point. Calculate the following: i) Slip at which maximum torque is developed. ii) Maximum torque developed. 3) Steady-state operation. Calculate the following: i) Motor slip. ii) Motor speed. iii) Motor current. iv) Motor...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT