In: Statistics and Probability
Consider the following sample data for the relationship between advertising budget and sales for Product A:
| Observation | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 
|---|---|---|---|---|---|---|---|---|---|---|
| Advertising ($) | 50,000 | 60,000 | 60,000 | 70,000 | 70,000 | 80,000 | 90,000 | 90,000 | 100,000 | 110,000 | 
| Sales ($) | 299,001 | 371,000 | 364,000 | 430,000 | 440,000 | 485,000 | 535,000 | 546,000 | 595,000 | 675,000 | 
What is the slope of the "least-squares" best-fit regression line?
Please round your answer to the nearest hundredth.
Note that the correct answer will be evaluated based on the full-precision result you would obtain using Excel.
Answer
Here x = independent variable = Advertising
y = Dependent variable = Sales
| x | y | 
| 50000 | 299001 | 
| 60000 | 371000 | 
| 60000 | 364000 | 
| 70000 | 430000 | 
| 70000 | 440000 | 
| 80000 | 485000 | 
| 90000 | 535000 | 
| 90000 | 546000 | 
| 100000 | 595000 | 
| 110000 | 675000 | 
We can solve this question using excel.
First, enter data into excel.
Click on Data -------> Data Analysis --------> Regression ------->
Input
Input Y Range : select y values
Input X Range :select values of x.
Output Range: select an empty cell
---------> ok
We get
| SUMMARY OUTPUT | ||||||||
| Regression Statistics | ||||||||
| Multiple R | 0.997459 | |||||||
| R Square | 0.994924 | |||||||
| Adjusted R Square | 0.99429 | |||||||
| Standard Error | 8743.382 | |||||||
| Observations | 10 | |||||||
| ANOVA | ||||||||
| df | SS | MS | F | Significance F | ||||
| Regression | 1 | 1.2E+11 | 1.2E+11 | 1568.178 | 1.82E-10 | |||
| Residual | 8 | 6.12E+08 | 76446723 | |||||
| Total | 9 | 1.2E+11 | ||||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
| Intercept | 8090.036 | 12085.85 | 0.669381 | 0.522098 | -19780 | 35960.06 | -19780 | 35960.06 | 
| x | 5.973206 | 0.150838 | 39.60023 | 1.82E-10 | 5.625374 | 6.321038 | 5.625374 | 6.321038 | 
So the least squares line is y = 8090.036 + 5.973206*x
So the slope is 5.97 ( After rounding nearest hundredth)