In: Accounting
You must do the necessary calculations in the answer cells. Simply providing a number in the answer cell will not receive any credit.
Part 1: Fill in the pink cells with forecasts. Round off to two decimal points.
| Part 1 | 
 Demand  | 
 3 Period Moving average  | 
5 period moving average | Exponential Smoothing Alpha= .1 | Exponential Smoothing Alpha= .4 | 
| Day 1 | 2690.0 | ||||
| Day 2 | 2700.0 | pink | pink | ||
| Day 3 | 2750.0 | pink | pink | ||
| Day 4 | 2690.0 | pink | pink | pink | |
| Day 5 | 2780.0 | pink | pink | pink | |
| Day 6 | 2530.0 | pink | pink | pink | pink | 
| Day 7 | 2660.0 | pink | pink | pink | pink | 
| Day 8 | 2520.0 | pink | pink | pink | pink | 
| Day 9 | 2540.0 | pink | pink | pink | pink | 
| Day 10 | 2600.0 | pink | pink | pink | pink | 
| Day 11 | 2700.0 | pink | pink | pink | pink | 
| Day 12 | pink | pink | pink | pink | 
Part 2: Fill in the yellow cells with measure of forecast error. Round off to two decimal places.
Period Demand Forecast
1 10316.0 10300.0
2 12443.0 10565.0
3 11717.0 10562.0
4 11035.0 10755.0
5 12173.0 11377.8
6 11015.0 11842.0
7 11039.0 11485.0
8 11934.0 11315.5
9 11972.0 11540.3
10 10518.0 11490.0
| Forecast | |
| CFE | yellow | 
| MAD | yellow | 
| MSE | yellow | 
| MAPE | yellow | 
Part 3: Answer the questions below. (forecast errors below are based on different data than that shown above.)
| Forecast A | Forecast B | Forecast C | |
| CFE | 22 | -22 | 1.5 | 
| MAD | 11.5 | 14.5 | 12.6 | 
| MSE | 145 | 169 | 156 | 
| MAPE | 0.11 | -0.21 | 0.16 | 
Question 1: Which measure of forecast error is incorrect. Identify the mistake by indicating both the measure of forecast error and the specific forecast (A, B, or C)
Question 2: Which forecast (A, B, or C) has the largest squared errors?
Question 3: Which forecast (A, B, or C) is the least 'biased'?
Grading Rubric
| points possible | points earned | |
|---|---|---|
| Part 1 | ||
| 3 pd MA | 12 | |
| 5 pd MA | 12 | |
| ES a=.1 | 12 | |
| ES a=.4 | 12 | |
| Part 2 | ||
| CFE | 7 | |
| MAD | 7 | |
| MSE | 7 | |
| MAPE | 7 | |
| Part 3 | ||
| Q1 | 8 | |
| Q2 | 8 | |
| Q3 | 8 | |
| Total | 100 | 0 | 
Formula sheet
| A | B | C | D | E | F | G | H | I | 
| 2 | ||||||||
| 3 | Part 1: | |||||||
| 4 | ||||||||
| 5 | n-period simple moving average is is the average value over the previous n periods of time. | |||||||
| 6 | n-period moving average | =(∑actual values in previous n period )/n | ||||||
| 7 | ||||||||
| 8 | In exponential smoothening, forecasted value at time t, F(t) in can be written as follows: | |||||||
| 9 | F(t) = α×Y(t-1)+(1-α)×F(t-1) | |||||||
| 10 | ||||||||
| 11 | Where Y(t-1) is the actual value at t-1 and F(t-1) is the forecasted value at t-1 | |||||||
| 12 | ||||||||
| 13 | For 0<α<1 and for t=1, F(1)= Y(1) | |||||||
| 14 | ||||||||
| 15 | Demand | 3 Period Moving average | 5 period moving average | Exponential Smoothing Alpha= .1 | Exponential Smoothing Alpha= .4 | |||
| 16 | Day 1 | 2690 | ||||||
| 17 | Day 2 | 2700 | =0.1*D16+(1-0.1)*D16 | =0.4*D16+(1-0.4)*D16 | ||||
| 18 | Day 3 | 2750 | =0.1*D17+(1-0.1)*G17 | =0.4*D17+(1-0.4)*H17 | ||||
| 19 | Day 4 | 2690 | =SUM(D16:D18)/3 | =0.1*D18+(1-0.1)*G18 | =0.4*D18+(1-0.4)*H18 | |||
| 20 | Day 5 | 2780 | =SUM(D17:D19)/3 | =0.1*D19+(1-0.1)*G19 | =0.4*D19+(1-0.4)*H19 | |||
| 21 | Day 6 | 2530 | =SUM(D18:D20)/3 | =SUM(D16:D20)/5 | =0.1*D20+(1-0.1)*G20 | =0.4*D20+(1-0.4)*H20 | ||
| 22 | Day 7 | 2660 | =SUM(D19:D21)/3 | =SUM(D17:D21)/5 | =0.1*D21+(1-0.1)*G21 | =0.4*D21+(1-0.4)*H21 | ||
| 23 | Day 8 | 2520 | =SUM(D20:D22)/3 | =SUM(D18:D22)/5 | =0.1*D22+(1-0.1)*G22 | =0.4*D22+(1-0.4)*H22 | ||
| 24 | Day 9 | 2540 | =SUM(D21:D23)/3 | =SUM(D19:D23)/5 | =0.1*D23+(1-0.1)*G23 | =0.4*D23+(1-0.4)*H23 | ||
| 25 | Day 10 | 2600 | =SUM(D22:D24)/3 | =SUM(D20:D24)/5 | =0.1*D24+(1-0.1)*G24 | =0.4*D24+(1-0.4)*H24 | ||
| 26 | Day 11 | 2700 | =SUM(D23:D25)/3 | =SUM(D21:D25)/5 | =0.1*D25+(1-0.1)*G25 | =0.4*D25+(1-0.4)*H25 | ||
| 27 | Day 12 | =SUM(D24:D26)/3 | =SUM(D22:D26)/5 | =0.1*D26+(1-0.1)*G26 | =0.4*D26+(1-0.4)*H26 | |||
| 28 | ||||||||