Question

In: Electrical Engineering

A balanced 3-phase load of 30MW at 132kV, 50Hz and 0.8P.F lagging is delivered by means...

A balanced 3-phase load of 30MW at 132kV, 50Hz and 0.8P.F

lagging is delivered by means of a 100km transmission line.

The series impedance of a single conductor is (20+j25)ohms

and the total phases to neutral admittance is 0.00000316

Siemen. Using the nominal ? method, determine

(a) the ABCD constants of the line.

(b) The receiving end current

(c) the sending end voltage

(d) the sending end current

(e) the sending-end power

(f) the receiving-end power

(g) The efficiency of the line

(h) The voltage regulation of the line

(i) Sending end p.fAs

Solutions

Expert Solution


Related Solutions

Two balanced three phase loads are connected to a busbar with 10kV line voltage at 50Hz....
Two balanced three phase loads are connected to a busbar with 10kV line voltage at 50Hz. Load A is 168kVA at cosφ = 0,85 (lagging). Load B is connected in Y and draws a complex phase current ?? = 4,79∠ − 24,5°. Calculate the total active, reactive and apparent power at the busbar. Calculate the combined cosφ at the busbar. A third balanced load is connected to the busbar.The total power at the busbar is now 288kW, cosφ = 0,87...
A single phase motor load draws 5.5 A of current at a 0.83 power factor lagging...
A single phase motor load draws 5.5 A of current at a 0.83 power factor lagging from a 50 Hz 240 V source. A capacitor is connected in parallel to the motor to improve the power factor. (a)If the power factor is improved to unity, find the value of capacitance of the capacitor. (b)If the power factor improves to 0.96, find the value of capacitance of the capacitor. PreviousNext
Three balanced 3-phase loads are connected in parallel. Load 1 is Y-connected with an impedance of...
Three balanced 3-phase loads are connected in parallel. Load 1 is Y-connected with an impedance of 400 + j300 ? per phase, load 2 is ?-connected with an impedance of 2400 – j1800 ? per phase, and load 3 is absorbing 172.8 + j2203.2 kVA. The loads are fed from a set of distribution lines with an impedance of 2 + j16 ? per line. The magnitude of the line-to-neutral voltage at the load end of the line is 24?3...
A balanced three-phase delta-connected load is connected to a balanced three-phase delta-connected source via a transmission...
A balanced three-phase delta-connected load is connected to a balanced three-phase delta-connected source via a transmission line. The line-line voltage for the source is 100∟0° V/phase and the impedance of load is (27 + j18) Ω/phase. The transmission line has an impedance of (1 + j4) Ω/line. a) Draw the complete schematic of the power system showing the location of wattmeters. (Two-Wattmeter system is considered for this problem). Phase “a” could be considered as a reference phase. b) What must...
A three-phase balanced star load No. 1 of (120 +j90) ohms in parallel with another three-phase...
A three-phase balanced star load No. 1 of (120 +j90) ohms in parallel with another three-phase balanced star load No. 2 of (90 +j120) ohms, both are fed by three-phase balanced conductors of 3 ohms resistance and 4 ohms reactance. If the generator is 240 volts, with angle of -150° on phase c and reactance of 1 ohms, determine: a) the current on load N°1 on phase C, b) the terminal voltage of the generator on phase B, c) the...
A 3 phase 50Hz overhead line has the following constants: R/phase=2ohms; Xl/phase=10ohms and Y/phase=4x10^-4 siemens. The...
A 3 phase 50Hz overhead line has the following constants: R/phase=2ohms; Xl/phase=10ohms and Y/phase=4x10^-4 siemens. The line is supplying a balanced load of 24000 KVA, 0.8 pf lagging at 66KV. Compute for the sending end voltage, sending end current and efficiency of the line using: a.Nominal T Method b.Nominal pi Method c.Rigorous Method
An unbalanced three-phase wye-connected and grounded load is connected to a balanced three-phase four-wire source. The...
An unbalanced three-phase wye-connected and grounded load is connected to a balanced three-phase four-wire source. The load impedances are Za = 14+j3 Ω , Zb = 5-j24Ω and Zc =1+j14 Ω  and the phase a line voltage has an effective value of 18 Kv: use line-to-neutral voltage of phase A as a reference. Find the line and neutral current, also find the reactive power delivered to load and power factor.
In a three-phase circuit the balanced delta load of (36 +j54) ohms is fed by impedance...
In a three-phase circuit the balanced delta load of (36 +j54) ohms is fed by impedance conductors (5 +j70) ohms. If the generator voltage is 120 V angle 0° phase A, calculate a) the bc voltage on the load, b) the powers in the conductors, c) the bc voltage of the delta load and d) the power delta on the load.
c)    A 3-phase load draws an apparent power of 80kVA from a 415V 3-phase supply. The...
c)    A 3-phase load draws an apparent power of 80kVA from a 415V 3-phase supply. The power factor of the load is 0.85. Determine the real power supplied to the load and the rms line current? D) Explain the importance of energy storage for grids that have large amounts of wind power. Name one type of storage system used within a large electricity grid. E) Explain why AC loads are often rated in terms of their apparent power (VA), rather...
Three balanced three-phase loads are connected in parallel. Load 1 is Y-connected with an impedance of...
Three balanced three-phase loads are connected in parallel. Load 1 is Y-connected with an impedance of 420+300i Ω/ϕ ; load 2 is Δ-connected with an impedance of 2400-1780i Ω/ϕ ; and load 3 is 170.1+2201i kVA . The loads are fed from a distribution line with an impedance of 2+17i Ω/ϕ . The magnitude of the line-to-neutral voltage at the load end of the line is 23√3 kV. Part A: Calculate the total complex power at the sending end of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT