Question

In: Advanced Math

a. Use mathematical induction to prove that for any positive integer ?, 3 divide ?^3 +...

a. Use mathematical induction to prove that for any positive integer ?, 3 divide ?^3 + 2?
(leaving no remainder).
Hint: you may want to use the formula: (? + ?)^3= ?^3 + 3?^2 * b + 3??^2 + ?^3.
b. Use strong induction to prove that any positive integer ? (? ≥ 2) can be written as a
product of primes.

Solutions

Expert Solution

if you stuck somewhere in the proof you can comment i will explain you their


Related Solutions

Use induction to prove that for any positive integer n, 8^n - 3^n is a multiple...
Use induction to prove that for any positive integer n, 8^n - 3^n is a multiple of 5.
Prove by strong mathematical induction that any integer greater than 1 is divisible by a prime...
Prove by strong mathematical induction that any integer greater than 1 is divisible by a prime number.
Use mathematical induction to prove that for every integer n >=2, if a set S has...
Use mathematical induction to prove that for every integer n >=2, if a set S has n elements, then the number of subsets of S with an even number of elements equals the number of subsets of S with an odd number of elements. pleases send all detail solution.
Use mathematical induction to prove that for each integer n ≥ 4, 5n ≥ 22n+1 +...
Use mathematical induction to prove that for each integer n ≥ 4, 5n ≥ 22n+1 + 100.
Prove that the proof by mathematical induction and the proof by strong induction are equivalent
Prove that the proof by mathematical induction and the proof by strong induction are equivalent
Use a mathematical induction for Prove a^(2n-1) + b^(2n-1) is divisible by a + b, for...
Use a mathematical induction for Prove a^(2n-1) + b^(2n-1) is divisible by a + b, for n is a positive integer
Prove that τ(n) < 2 n for any positive integer n. This is a question in...
Prove that τ(n) < 2 n for any positive integer n. This is a question in Number theory
Prove or disprove that 3|(n 3 − n) for every positive integer n.
Prove or disprove that 3|(n 3 − n) for every positive integer n.
5. Without using the method of mathematical induction, prove that 5^n − 3^n + 2n is...
5. Without using the method of mathematical induction, prove that 5^n − 3^n + 2n is divisible by 4 for all natural n.
Please be able to follow the COMMENT Use induction proof to prove that For all positive...
Please be able to follow the COMMENT Use induction proof to prove that For all positive integers n we have the inequality n<=2^n here is the step: base step: P(1)= 1<=2^1    inductive step: k+1<= 2^(k)+1 <= 2^(k)+k (since k>=1) <= 2^(k)+2^(k) = 2X2^(k) =2^(k+1) i don't understand why 1 can be replaced by k and i don't know why since k>=1
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT