Question

In: Advanced Math

Use induction to prove that for any positive integer n, 8^n - 3^n is a multiple...

Use induction to prove that for any positive integer n, 8^n - 3^n is a multiple of 5.

Solutions

Expert Solution


Related Solutions

a. Use mathematical induction to prove that for any positive integer ?, 3 divide ?^3 +...
a. Use mathematical induction to prove that for any positive integer ?, 3 divide ?^3 + 2? (leaving no remainder). Hint: you may want to use the formula: (? + ?)^3= ?^3 + 3?^2 * b + 3??^2 + ?^3. b. Use strong induction to prove that any positive integer ? (? ≥ 2) can be written as a product of primes.
Prove that τ(n) < 2 n for any positive integer n. This is a question in...
Prove that τ(n) < 2 n for any positive integer n. This is a question in Number theory
Prove or disprove that 3|(n 3 − n) for every positive integer n.
Prove or disprove that 3|(n 3 − n) for every positive integer n.
Use induction to prove that 8^n - 3^n is divisible by 5 for all integers n>=1.
Use induction to prove that 8^n - 3^n is divisible by 5 for all integers n>=1.
Use mathematical induction to prove that for every integer n >=2, if a set S has...
Use mathematical induction to prove that for every integer n >=2, if a set S has n elements, then the number of subsets of S with an even number of elements equals the number of subsets of S with an odd number of elements. pleases send all detail solution.
Use mathematical induction to prove that for each integer n ≥ 4, 5n ≥ 22n+1 +...
Use mathematical induction to prove that for each integer n ≥ 4, 5n ≥ 22n+1 + 100.
Use strong induction to show that every positive integer, n, can be written as a sum...
Use strong induction to show that every positive integer, n, can be written as a sum of powers of two: 20, 21, 22, 23, .....
Use strong induction to show that every positive integer n can be written as a sum...
Use strong induction to show that every positive integer n can be written as a sum of distinct powers of two, that is, as a sum of a subset of the integers 2^0 =1, 2^1 = 2, 2^2 = 4, and so on. [Hint: For the inductive step, separately consider the case where k + 1 is even and where it is odd. When it is even, note that (k + 1)/2 is an integer.]
Let n be a positive integer. Prove that if n is composite, then n has a...
Let n be a positive integer. Prove that if n is composite, then n has a prime factor less than or equal to sqrt(n) . (Hint: first show that n has a factor less than or equal to sqrt(n) )
Use double induction to prove that (m+ 1)^n> mn for all positive integers m; n
Use double induction to prove that (m+ 1)^n> mn for all positive integers m; n
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT