Question

In: Advanced Math

Consider the formula A : ∃x.[(∀y.P(x, y) → R(x)) → ¬∃z.Q(x, z)] (a) Find a formula...

Consider the formula

A : ∃x.[(∀y.P(x, y) → R(x)) → ¬∃z.Q(x, z)]

(a) Find a formula equivalent to A that only has negation symbols in front of basic formulas.

(b) Give an example of an interpretation where A is true. The domain should be the set N.

(c) Give an example of an interpretation where A is false. The domain should be the set N.

Solutions

Expert Solution

in the part a i am use the concept of double negation and then proved in part b and C only ask for example therefore I am give only example


Related Solutions

*(1)(a) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z):...
*(1)(a) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): z=c}. (b) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): x=a}. (c) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): y=b}. *(2) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): z=kx+b} assuming both b and k are positive. (a) For what value of...
Find the positive numbers x, y and z whose sum is 100 such that x^r y^s...
Find the positive numbers x, y and z whose sum is 100 such that x^r y^s z^t is a maximum, where r, s and t are constants.
a. consider the plane with equation -x+y-z=2, and let p be the point (3,2,1)in R^3. find...
a. consider the plane with equation -x+y-z=2, and let p be the point (3,2,1)in R^3. find the distance from P to the plane. b. let P be the plane with normal vector n (1,-3,2) which passes through the point(1,1,1). find the point in the plane which is closest to (2,2,3)
Given the function u(p,q,r)=((p-q)/(q-r)), with p=x+y+z,q=x-y+z, and r=x+y-z, find the partial derivatives au/ax=, au/ay=, au/az=
Given the function u(p,q,r)=((p-q)/(q-r)), with p=x+y+z,q=x-y+z, and r=x+y-z, find the partial derivatives au/ax=, au/ay=, au/az=
Find ??, ?? and ?? of F(x, y, z) = tan(x+y) + tan(y+z) – 1
Find ??, ?? and ?? of F(x, y, z) = tan(x+y) + tan(y+z) – 1
Consider the linear transformation T: R^4 to R^3 defined by T(x, y, z, w) = (x...
Consider the linear transformation T: R^4 to R^3 defined by T(x, y, z, w) = (x +2y +z, 2x +2y +3z +w, x +4y +2w) a) Find the dimension and basis for Im T (the image of T) b) Find the dimension and basis for Ker ( the Kernel of T) c) Does the vector v= (2,3,5) belong to Im T? Justify the answer. d) Does the vector v= (12,-3,-6,0) belong to Ker? Justify the answer.
Suppose x,y ∈ R and assume that x < y. Show that for all z ∈...
Suppose x,y ∈ R and assume that x < y. Show that for all z ∈ (x,y), there exists α ∈ (0,1) so that αx+(1−α)y = z. Now, also prove that a set X ⊆ R is convex if and only if the set X satisfies the property that for all x,y ∈ X, with x < y, for all z ∈ (x,y), z ∈ X.
Consider the following utility function U(x,y)=x^r+y^r,0<r<1   Find the income effect and substitution effect?  ...
Consider the following utility function U(x,y)=x^r+ y^r,0<r<1   Find the income effect and substitution effect?   Does the substitution effect increase or decrease when r increases?
Use implicit differentiation to find ∂z/∂x and ∂z/∂y if xz = cos (y + z).
Use implicit differentiation to find ∂z/∂x and ∂z/∂y if xz = cos (y + z).
Find the coordinates of the point (x, y, z) on the plane z = 4 x...
Find the coordinates of the point (x, y, z) on the plane z = 4 x + 1 y + 4 which is closest to the origin.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT