In: Math
The two-column proof below describes the statements and reasons
for proving that corresponding angles are congruent:
| Step | Statements | Reasons | 
|---|---|---|
| 1 | Given | |
| 2 | Points S, Q, R, and T all lie on the same line. | Given | 
| 3 | m∠SQT = 180° | Definition of a Straight Angle | 
| 4 | m∠SQV + m∠VQT = m∠SQT | Angle Addition Postulate | 
| 5 | m∠SQV + m∠VQT = 180° | Substitution Property of Equality | 
| 6 | m∠VQT + m∠ZRS = 180° | Same-Side Interior Angles Theorem | 
| 7 | Substitution Property of Equality | |
| 8 | m∠SQV + m∠VQT − m∠VQT = m∠VQT + m∠ZRS − m∠VQT m∠SQV = m∠ZRS  | 
Subtraction Property of Equality | 
| ∠SQV ≅ ∠ZRS | Definition of Congruency | 
What is the missing statement for step 7?
m∠SQV + m∠VQT = 180° m∠VQT + m∠ZRS = 180° ∠SQV + m∠VQT = m∠VQT + m∠ZRS m∠SQV + m∠SQT = 180°