In: Math
The two-column proof below describes the statements and reasons
for proving that corresponding angles are congruent:
Step | Statements | Reasons |
---|---|---|
1 | Given | |
2 | Points S, Q, R, and T all lie on the same line. | Given |
3 | m∠SQT = 180° | Definition of a Straight Angle |
4 | m∠SQV + m∠VQT = m∠SQT | Angle Addition Postulate |
5 | m∠SQV + m∠VQT = 180° | Substitution Property of Equality |
6 | m∠VQT + m∠ZRS = 180° | Same-Side Interior Angles Theorem |
7 | Substitution Property of Equality | |
8 | m∠SQV + m∠VQT − m∠VQT = m∠VQT + m∠ZRS − m∠VQT m∠SQV = m∠ZRS |
Subtraction Property of Equality |
∠SQV ≅ ∠ZRS | Definition of Congruency |
What is the missing statement for step 7?
m∠SQV + m∠VQT = 180° m∠VQT + m∠ZRS = 180° ∠SQV + m∠VQT = m∠VQT + m∠ZRS m∠SQV + m∠SQT = 180°