Question

In: Economics

Consumer preference is give by u(X1, X2) = max{α1X1, α2X2} • Plot indifference curves • Derive...

Consumer preference is give by u(X1, X2) = max{α1X1, α2X2}

• Plot indifference curves
• Derive demand functions
• Derive the expenditure function

Solutions

Expert Solution

^ we get such an EITHER-OR kind of optimal choice because utility function is CONCAVE in this case


Related Solutions

1. Assume a consumer has as preference relation represented by u(x1; x2) = x1a + x2...
1. Assume a consumer has as preference relation represented by u(x1; x2) = x1a + x2 for a E (0,1); with x E C = R2+: Answer the following: a. Show the preference relation this consumer is convex and strictly monotonic. b. Compute the MRS between good 1 and good 2, and explain why it coincides with the slope of an indifference curve. c. Write down the consumer optimization problem, and construct the first order conditions for this problem. d....
If the consumer preference on (x1, x2) can be represented as the following utility function: U...
If the consumer preference on (x1, x2) can be represented as the following utility function: U = 0,75 log ?1 + 0,25 log ?1 s.t. ?1?1 + ?2?2 = ? a. Find the walrasian/marashallian demand function for both goods b. Find the Indirect Utility Function c. Show using example that the indirect utility function is homogenous of degree zero in p and I
Pat’s preference is given by u(x1, x2) = min {x1, x2}. Currently, prices are p =...
Pat’s preference is given by u(x1, x2) = min {x1, x2}. Currently, prices are p = (p1, p2) and Pat’s income is I. Is he better off if the price of good one is halved so that p = (p1/2 ,p2), or if his income is doubled to 2I?
Amy has utility function u (x1, x2) = min { 2*(x1)^2*x2, x1*(x2)^2 }. Derive Amy's demand...
Amy has utility function u (x1, x2) = min { 2*(x1)^2*x2, x1*(x2)^2 }. Derive Amy's demand function for x1 and x2. For what values (if any) of m, p1, and p2 are the goods gross complements or gross substitutes of each other?
Your preference is represented by the utility function: u(x1, x2) = x10.5x20.5 where x1 is potato...
Your preference is represented by the utility function: u(x1, x2) = x10.5x20.5 where x1 is potato chips (in bags) and x2 is chocolate bars. The price of a bag of potato chips is $5 and the price of a chocolate bar is $10. (a)You have no income, but you received a gift from your uncle. The gift is 9 bags of potato chips and 1 chocolate bar. What is your utility from consuming the gift? Assume that you cannot exchange...
Assume a consumer has the utility function U (x1 , x2 ) = ln x1 +...
Assume a consumer has the utility function U (x1 , x2 ) = ln x1 + ln x2 and faces prices p1 = 1 and p2 = 3 . [He,She] has income m = 200 and [his,her] spending on the two goods cannot exceed her income. Write down the non-linear programming problem. Use the Lagrange method to solve for the utility maximizing choices of x1 , x2 , and the marginal utility of income λ at the optimum.
Suppose that a consumer has a utility function U(x1,x2) = x1 ^0.5 x2^0.5 . Initial prices...
Suppose that a consumer has a utility function U(x1,x2) = x1 ^0.5 x2^0.5 . Initial prices are p1 =1and p2 =1,andincomeism=100. Now, the price of good1 increases to 2. (a) On the graph, please show initial choice (in black), new choice (in blue), compensating variation (in green) and equivalent variation (in red). (b) What is amount of the compensating variation? How to interpret it? (c) What is amount of the equivalent variation? How to interpret it?
Suppose a consumer seeks to maximize the utility function U (x1; x2) = (-1/x1)-(1/x2) ; subject...
Suppose a consumer seeks to maximize the utility function U (x1; x2) = (-1/x1)-(1/x2) ; subject to the budget constraint p1x1 + p2x2 = Y; where x1 and x2 represent the quantities of goods consumed, p1 and p2 are the prices of the two goods and Y represents the consumer's income. (a)What is the Lagrangian function for this problem? Find the consumer's demand functions, x1 and x2 . (b) Show the bordered Hessian matrix, H for this problem. What does...
Consider a consumer with utility function U(x) =2√x1+x2. Draw her two Engel curves. Find the Demand...
Consider a consumer with utility function U(x) =2√x1+x2. Draw her two Engel curves. Find the Demand Function.
A consumer’s utility function is U(x1,x2)=3x1+x21/3. If the consumer weakly prefers the bundle (x1’,x2’) to the...
A consumer’s utility function is U(x1,x2)=3x1+x21/3. If the consumer weakly prefers the bundle (x1’,x2’) to the bundle (x1’’,x2’’), will he necessarily also weakly prefer the bundle (x1’+1,x2’) to the bundle (x1’’+1,x2’’)?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT