Question

In: Economics

If the consumer preference on (x1, x2) can be represented as the following utility function: U...

If the consumer preference on (x1, x2) can be represented as the following utility function: U = 0,75 log ?1 + 0,25 log ?1 s.t. ?1?1 + ?2?2 = ?

a. Find the walrasian/marashallian demand function for both goods

b. Find the Indirect Utility Function

c. Show using example that the indirect utility function is homogenous of degree zero in p and I

Solutions

Expert Solution


Related Solutions

Your preference is represented by the utility function: u(x1, x2) = x10.5x20.5 where x1 is potato...
Your preference is represented by the utility function: u(x1, x2) = x10.5x20.5 where x1 is potato chips (in bags) and x2 is chocolate bars. The price of a bag of potato chips is $5 and the price of a chocolate bar is $10. (a)You have no income, but you received a gift from your uncle. The gift is 9 bags of potato chips and 1 chocolate bar. What is your utility from consuming the gift? Assume that you cannot exchange...
1. Assume a consumer has as preference relation represented by u(x1; x2) = x1a + x2...
1. Assume a consumer has as preference relation represented by u(x1; x2) = x1a + x2 for a E (0,1); with x E C = R2+: Answer the following: a. Show the preference relation this consumer is convex and strictly monotonic. b. Compute the MRS between good 1 and good 2, and explain why it coincides with the slope of an indifference curve. c. Write down the consumer optimization problem, and construct the first order conditions for this problem. d....
Assume a consumer has the utility function U (x1 , x2 ) = ln x1 +...
Assume a consumer has the utility function U (x1 , x2 ) = ln x1 + ln x2 and faces prices p1 = 1 and p2 = 3 . [He,She] has income m = 200 and [his,her] spending on the two goods cannot exceed her income. Write down the non-linear programming problem. Use the Lagrange method to solve for the utility maximizing choices of x1 , x2 , and the marginal utility of income λ at the optimum.
Slutsky Equation: Exercise 12: Assume preferences can be represented by the following utility function: u(x1, x2)...
Slutsky Equation: Exercise 12: Assume preferences can be represented by the following utility function: u(x1, x2) = x1 x22 a. Are preferences monotonic? Justify. b. Set up the consumer’s utility maximization problem for prices p1, p2 and income m (the general case) c. Solve the problem. You will obtain demand functions x∗1 (p1 , p2 , m) and x∗2 (p1, p2, m) in terms of the parameters (p1, p2, m) . Obtain price elasticity of demand for good one. Obtain...
(a) Calculate the marginal utility of x1 and x2 for the following utility function u (x1;...
(a) Calculate the marginal utility of x1 and x2 for the following utility function u (x1; x2) = x 1 x 2 (b) What must be true of and for the consumer to have a positive marginal utility for each good? (c) Does the utility function above exhibit a diminishing marginal rate of substitution? Assume that and satisfy the conditions from Part b. (Hint: A utility function exhibits a diminishing marginal rate of substitution if the derivative of the marginal...
Exercise 14: Assume preferences can be represented by the following utility function: u(x1,x2)=−x12 +100x1 +20x2 a....
Exercise 14: Assume preferences can be represented by the following utility function: u(x1,x2)=−x12 +100x1 +20x2 a. Is the utility function monotonic? Justify. b. Set up the consumer’s utility maximization problem for prices p1, p2 and income m (the general case) c. Solve the problem. You will obtain demand functions x∗1 (p1 , p2 , m) and x∗2 (p1, p2, m) in terms of the parameters (p1, p2, m) . d. Graph the demand function for good 1 when the price...
Suppose that a consumer has a utility function U(x1,x2) = x1 ^0.5 x2^0.5 . Initial prices...
Suppose that a consumer has a utility function U(x1,x2) = x1 ^0.5 x2^0.5 . Initial prices are p1 =1and p2 =1,andincomeism=100. Now, the price of good1 increases to 2. (a) On the graph, please show initial choice (in black), new choice (in blue), compensating variation (in green) and equivalent variation (in red). (b) What is amount of the compensating variation? How to interpret it? (c) What is amount of the equivalent variation? How to interpret it?
Suppose a consumer seeks to maximize the utility function U (x1; x2) = (-1/x1)-(1/x2) ; subject...
Suppose a consumer seeks to maximize the utility function U (x1; x2) = (-1/x1)-(1/x2) ; subject to the budget constraint p1x1 + p2x2 = Y; where x1 and x2 represent the quantities of goods consumed, p1 and p2 are the prices of the two goods and Y represents the consumer's income. (a)What is the Lagrangian function for this problem? Find the consumer's demand functions, x1 and x2 . (b) Show the bordered Hessian matrix, H for this problem. What does...
Suppose an agent has preferences represented by the following utility function: u(x1, x2) = 1/4 ln(x1)...
Suppose an agent has preferences represented by the following utility function: u(x1, x2) = 1/4 ln(x1) + 3/4 ln(x2) The price of good x1 is 2, the price of good x2 is 6, and income is 40. a) What is the consumers best feasible bundle (ie, his optimal consumption bundle)? b) Interpret the consumer’s marginal rate of substitution at the best feasible bundle found in part a).
Suppose an agent has preferences represented by the utility function: U(x1, x2) =1/5 ln (x1) +...
Suppose an agent has preferences represented by the utility function: U(x1, x2) =1/5 ln (x1) + 4/5 ln (x2) The price of x1 is 6 and the price of x2 is 12, and income is 100. a) What is the consumer’s optimal consumption bundle? b) Suppose the price of x2 is now 4, what is the consumer’s new best feasible bundle?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT