Question

In: Economics

Consider a consumer with utility function U(x) =2√x1+x2. Draw her two Engel curves. Find the Demand...

Consider a consumer with utility function U(x) =2√x1+x2.

Draw her two Engel curves.

Find the Demand Function.

Solutions

Expert Solution

Solution: Let us find the demand function first :

1. Find MRS first.

= 2 . 1 / 2X1^(1/2) = 1/X1^(!/2)

= 1

MRS = = 1/X1^(1/2)

2. Equate MRS with the price ratio:

1/X1^(1/2) = Px1/ Px2

X1 =( Px2)^2/(Px1)^2

3. Put the value of X1 in the budget line :

M = Px1 *X1 + Px2 *X2

M = Px1 * ( Px2)^2/(Px1)^2 + Px2 *X2

Solve for X2 ,

X2 = (MPx1 -Px2^2) /Px1*Px2

If you see the demand function X1 and X2 you will come to know that X1 is not dependent on Price but X2 is dependent on price.

We can say that X1 is a good like Salt. If the income of a consumer increases he will be purchasing salt but the demand will not change due to increase in the salt .So its engel curve will look like this.

While the demand of X2 is positively related to income ,if you increase the level of income you can see that the demand for X2 will also increase so the engel curve will look like :


Related Solutions

Assume a consumer has the utility function U (x1 , x2 ) = ln x1 +...
Assume a consumer has the utility function U (x1 , x2 ) = ln x1 + ln x2 and faces prices p1 = 1 and p2 = 3 . [He,She] has income m = 200 and [his,her] spending on the two goods cannot exceed her income. Write down the non-linear programming problem. Use the Lagrange method to solve for the utility maximizing choices of x1 , x2 , and the marginal utility of income λ at the optimum.
Given the utility function U(x1, x2)= -2x1 + x2^2, (a)Find the marginal utility of both the...
Given the utility function U(x1, x2)= -2x1 + x2^2, (a)Find the marginal utility of both the goods. Explain whether preferences satisfy monotonicity in both goods. (b)Using the graph with a reference bundle A, draw the indifference curve and shade the quadrants that make the consumer worse off and better off for the given preferences.
Amy has utility function u (x1, x2) = min { 2*(x1)^2*x2, x1*(x2)^2 }. Derive Amy's demand...
Amy has utility function u (x1, x2) = min { 2*(x1)^2*x2, x1*(x2)^2 }. Derive Amy's demand function for x1 and x2. For what values (if any) of m, p1, and p2 are the goods gross complements or gross substitutes of each other?
Suppose that a consumer has a utility function U(x1,x2) = x1 ^0.5 x2^0.5 . Initial prices...
Suppose that a consumer has a utility function U(x1,x2) = x1 ^0.5 x2^0.5 . Initial prices are p1 =1and p2 =1,andincomeism=100. Now, the price of good1 increases to 2. (a) On the graph, please show initial choice (in black), new choice (in blue), compensating variation (in green) and equivalent variation (in red). (b) What is amount of the compensating variation? How to interpret it? (c) What is amount of the equivalent variation? How to interpret it?
Suppose a consumer seeks to maximize the utility function U (x1; x2) = (-1/x1)-(1/x2) ; subject...
Suppose a consumer seeks to maximize the utility function U (x1; x2) = (-1/x1)-(1/x2) ; subject to the budget constraint p1x1 + p2x2 = Y; where x1 and x2 represent the quantities of goods consumed, p1 and p2 are the prices of the two goods and Y represents the consumer's income. (a)What is the Lagrangian function for this problem? Find the consumer's demand functions, x1 and x2 . (b) Show the bordered Hessian matrix, H for this problem. What does...
If the consumer preference on (x1, x2) can be represented as the following utility function: U...
If the consumer preference on (x1, x2) can be represented as the following utility function: U = 0,75 log ?1 + 0,25 log ?1 s.t. ?1?1 + ?2?2 = ? a. Find the walrasian/marashallian demand function for both goods b. Find the Indirect Utility Function c. Show using example that the indirect utility function is homogenous of degree zero in p and I
Consider a consumer with preferences represented by the utility function: u(x, y) = x1/4y1/2 Suppose the...
Consider a consumer with preferences represented by the utility function: u(x, y) = x1/4y1/2 Suppose the consumer has income M = 10 and the prices are px=1 and Py = 2. (a) Are goods x and y both desirable? (b) Are there implications for the utility maximization problem for the consumer from your finding in 1a? If so, explain in detail. (c) Derive the utility maximizing bundle.
Consider a consumer with preferences represented by the utility function: u(x; y) = x1/4y1/2 Suppose the...
Consider a consumer with preferences represented by the utility function: u(x; y) = x1/4y1/2 Suppose the consumer has income M = 10 and the prices are px = 1 and py = 2. (a) Are goods x and y both desirable? (b) Are there implications for the utility maximization problem for the consumer from your finding in a? If so, explain in detail.
Sara’s utility function is u(x1, x2) = (x1 + 2)(x2 + 1). a. Write an equation...
Sara’s utility function is u(x1, x2) = (x1 + 2)(x2 + 1). a. Write an equation for Sara’s indifference curve that goes through the point (2,8). b. Suppose that the price of each good is 1 and that Clara has an income of 11. Draw her budget line. Can Sara achieve a utility of 36 with this budget? Why or why not? c. Evaluate the marginal rate of substitution MRS at (x1, x2) = (1, 5). Provide an economic interpretation...
A consumer’s utility function is U(x1,x2)=3x1+x21/3. If the consumer weakly prefers the bundle (x1’,x2’) to the...
A consumer’s utility function is U(x1,x2)=3x1+x21/3. If the consumer weakly prefers the bundle (x1’,x2’) to the bundle (x1’’,x2’’), will he necessarily also weakly prefer the bundle (x1’+1,x2’) to the bundle (x1’’+1,x2’’)?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT