Question

In: Physics

A tank initially contains 300 gallons of a salt solution made by dissolving 30 pounds of...

A tank initially contains 300 gallons of a salt solution made by dissolving 30 pounds of salt in water. A solution containing 0.6 pounds of salt per gallon enters the tank at a rate of 5 gallons per minute. A drain is opened at the bottom of the tank through which the well stirred solution leaves the tank at the same rate of 5 gallons per minute. Let y(t) denote the amount of salt (in pounds) which is in the tank at time t. (A) find out y(t)?( B) how much salt is in the tank after 1/2 hour?

Solutions

Expert Solution


Related Solutions

A tank contains 400 gallons of brine (salt in solution) in which 125 pounds of salt...
A tank contains 400 gallons of brine (salt in solution) in which 125 pounds of salt has been dissolved. Freshwater (with no salt added) runs into the tank at a rate of 4 gallons per minute, and the stirred mixture is drained from the tank at the same rate. (1) Find the amount of salt in the tank after an hour. (2) How long does it take to reduce the amount of salt in the tank to 10 pounds?
initially a large tank with a capacity of 300 gallons contains 150 gallons of clean water....
initially a large tank with a capacity of 300 gallons contains 150 gallons of clean water. A solution of salt with a concentration of 2 lb / gal flows into the tank at a rate of 50 gal / min. The solution is perfectly well mixed while the solution is extracted at a rate of 25 gal / min. Find: a) the amount of salt in the tank at the time it is filled (in pounds) b) the speed at...
A 200 gallon tank initial contains 100 gallons of water and 20 pounds of dissolved salt....
A 200 gallon tank initial contains 100 gallons of water and 20 pounds of dissolved salt. Brine solution begins to enter the tank at the rate of 2 gal/min with a salt concentration of 2 lb/gal. The well mixed solution leaves the tank at the rate of 1 gal/min. Find the amount of salt inside the tank 50 minutes after the process starts?
A tank contains 365 gallons of water and 50 oz of salt. Water containing a salt...
A tank contains 365 gallons of water and 50 oz of salt. Water containing a salt concentration of 1/6(1 + 1/4 sin t) oz/gal flows into the tank at a rate of 8 gal/min, and the mixture in the tank flows out at the same rate. The long-term behavior of the solution is an oscillation about a certain constant level. a) What is this level? b) What is the amplitude of the oscillation?
A tank contains 360 gallons of water and 50 oz of salt. Water containing a salt...
A tank contains 360 gallons of water and 50 oz of salt. Water containing a salt concentration of 1 6 (1 + 1 4 sin t) oz/gal flows into the tank at a rate of 8 gal/min, and the mixture in the tank flows out at the same rate. The long-term behavior of the solution is an oscillation about a certain constant level. a) What is this level? b) What is the amplitude of the oscillation? (Round your answers to...
A 100 gallon tank initially contains 10 gallons of fresh water. At t=0 a brine solution...
A 100 gallon tank initially contains 10 gallons of fresh water. At t=0 a brine solution containing 1 pound of salt per gallon is poured into the tank at the rate of 4 gal/min., while the well-stirred mixture leaves the tank at the rate of 2 gal/min. Find the amount of salt in the tank at the moment of overflow. Enter answer as numerical decimal correct to two decimal places. pounds.
A tank contains 200 gallons of water that has 5 lbs of salt already in it....
A tank contains 200 gallons of water that has 5 lbs of salt already in it. A brine containing .5 lbs of salt per gallon is entering the tank at a rate of 2 gal min , and the well stirred mixture exits the tank at the same rate. What is the concentration of salt in the tank after 5 minutes?
At time t = 0 a tank contains 25lb of salt dissolved in 100 gallons of...
At time t = 0 a tank contains 25lb of salt dissolved in 100 gallons of water. assume that water containing 2lb salt/gallon enters the tank at a rate of 5 gal/min and the well-stirred solution is leaving the tank at the same rate. solve for Q(t) [Amount of salt in tank at time t ]
At time t=0 a tank holds 550 gallons of water with 100 pounds of dissolved salt....
At time t=0 a tank holds 550 gallons of water with 100 pounds of dissolved salt. An input pipe brings in solution at 8 gallons per minute at a concentration of 2 pounds per gallon. An output pipe carries away solution at 2 gallons per minute. Find how much salt is in the tank after 45 minutes.
A tank contains 420 litres of a solution, with 20 kilograms of salt in the solution....
A tank contains 420 litres of a solution, with 20 kilograms of salt in the solution. A solution with a concentration of 57 kilograms per litre enters the tank at a rate of 7 litres per minute. The well-stirred solution flows out of the tank at the same rate. Determine the mathematical model that gives the function y(t), the number of kilograms of salt in the tank after t minutes
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT