Question

In: Chemistry

Calculate the percentage change in the equilibrium constant Kx of the reaction H2CO(g) to CO(g) +...

Calculate the percentage change in the equilibrium constant Kx of the reaction H2CO(g) to CO(g) + H2(g) when the total pressure is increased from 1.0 bar to 2.0 bar at constant temperature

Solutions

Expert Solution

Sol :-

Given equilibrium equation is :

H2CO (g) <------------> CO (g) + H2 (g)

Now the expression of equilibrium constant i.e. k ( is the ratio of product of the molar concentration of products to the product of the molar concentration of reactants raised to the power of stoichiometric coefficient with respect to each reagent at equilibrium stage of the reaction ) is .

k = PCO (g). PH2 (g) / PH2CO (g) ...............(1)

From the application of Dalton law of partial pressure , we know that

Partial pressure of gas (i.e. PA) = Mole fraction (XA) x Total pressure (PT)

so

PCO (g) = XCO (g) . PT

PH2 (g) = XH2 (g) . PT and

PH2CO (g) = XH2CO (g) . PT

Substitute all these values in equation (1), we have

k = (XCO (g) . PT ) ( XH2 (g) . PT ) / (XH2CO (g) . PT )

k = XCO (g) . XH2 (g) . PT / XH2CO (g) ...........(2)

Now form equation (2) , it is cleared that equilibrium constant (k) is directly proportional to the total pressure (PT) , therefore on doubling the total pressure ( i.e.1.0 atm to 2.0 atm ) equilibrium constant also doubled .

Hence percentage change in equilibrium constant will be = 200 %


Related Solutions

At 100.0 C, the equilibrium constant for the reaction: CO (g) + Cl2 (g) <--> COCl2...
At 100.0 C, the equilibrium constant for the reaction: CO (g) + Cl2 (g) <--> COCl2 (g) has a value of 4.6 x 109. If 0.40 mol of COCl2 is placed into a 10.0 L flask at 100.0 C, what will be the equilibrium concentration of all species? (A simplifying approximation that will make the solution of the resulting equation easier is to note that x is much less than 0.040mol/L. This means that 0.040 -x is approximately 0.040.)
Consider the following reaction with an equilibrium constant of 5.10 at 527oC. CO(g) + H2O(g) ⇌...
Consider the following reaction with an equilibrium constant of 5.10 at 527oC. CO(g) + H2O(g) ⇌ H2(g) + CO2(g) If [CO] = 0.150 M, [H2O] = 0.250 M, [H2] = 0.420 M, and [CO2] = 0.370 M, calculate Q. ? Consider the following reaction: 2SO2(g) + O2(g) ⇌ 2SO3(g) Which of the following would not result in a shift towards an increase in production of SO3?pick the correct answer? a)Increase in volume b)Decrease in volume c)Increase in the amount of...
The change in enthalpy for a reaction is -25.8kJ. The equilibrium constant for the reaction is...
The change in enthalpy for a reaction is -25.8kJ. The equilibrium constant for the reaction is 1400 at 25 degrees Celsius. What is the equilibrium constant at 382 degrees Celsius?
The equilibrium constant, Kp, for the following reaction is 1.57 at 600 K: CO(g) + Cl2(g)...
The equilibrium constant, Kp, for the following reaction is 1.57 at 600 K: CO(g) + Cl2(g) COCl2(g) Calculate the equilibrium partial pressures of all species when CO and Cl2, each at an intitial partial pressure of 1.65 atm, are introduced into an evacuated vessel at 600 K. PCO = ______ atm PCl2= _______ atm PCOCl2 = _______ atm
The equilibrium constant, Kc, for the following reaction is 77.5 at 600 K. CO(g) + Cl2(g)...
The equilibrium constant, Kc, for the following reaction is 77.5 at 600 K. CO(g) + Cl2(g) COCl2(g) Calculate the equilibrium concentrations of reactant and products when 0.576 moles of CO and 0.576 moles of Cl2 are introduced into a 1.00 L vessel at 600 K. [CO] = M [Cl2] = M [COCl2] = M
PS8.2. The equilibrium constant, KP, for the reaction CO2(g) + H2(g) H2O(g) + CO(g) is 0.138....
PS8.2. The equilibrium constant, KP, for the reaction CO2(g) + H2(g) H2O(g) + CO(g) is 0.138. Calculate the partial pressure of all species at equilibrium for each of the following original mixtures: a) 1.36 atm of CO2 and 1.36 atm of H2. b) 0.87 atm of CO2, 0.87 atm of H2 and 0.87 atm of H2O(g). c) 0.64 atm of H2O and 0.64 atm of CO.
Calculate the equilibrium composition for the reaction Cgraphite + H2O(g) _<->CO(g) + H2(g) at T =...
Calculate the equilibrium composition for the reaction Cgraphite + H2O(g) _<->CO(g) + H2(g) at T = 298 K, 500 K, 1000 K, and 2000 K and a pressure of 1 bar. For the initial number of moles, use 1 mole of graphite, 3 moles of H2O(g), and no CO or H2.
Consider the equilibrium N2(g)+O2(g)+Br2(g)⇌2NOBr(g) Part A Calculate the equilibrium constant Kp for this reaction, given the...
Consider the equilibrium N2(g)+O2(g)+Br2(g)⇌2NOBr(g) Part A Calculate the equilibrium constant Kp for this reaction, given the following information (at 295 K ): 2NO(g)+Br2(g)⇌2NOBr(g)Kc=2.1 2NO(g)⇌N2(g)+O2(g)Kc=2.2×1030 Express your answer using two significant figures.
A.) The equilibrium constant for the reaction A(g) ⇌ B(g) is 102 . A reaction mixture...
A.) The equilibrium constant for the reaction A(g) ⇌ B(g) is 102 . A reaction mixture initially contains [A] = 18.6 M and [B] = 0.0 M. Which statement is true at equilibrium? The reaction mixture contains [A] = 18.4 M and [B] = 0.2 M. The reaction mixture contains [A] = 0.2 M and [B] = 18.4 M. The reaction mixture contains [A] = 1.0 M and [B] = 17.6 M. The reaction mixture contains [A] = 9.30 M...
Write the principal equilibrium reaction and calculate the equilibrium constant for the base hydrolysis reaction of...
Write the principal equilibrium reaction and calculate the equilibrium constant for the base hydrolysis reaction of solid calcium phosphate to form monohydrogenphosphate anion as the principal phosphate containing species. Determine the pH of the solution. Ksp = 1.2 x 10-26. For H3PO4, Ka1, Ka2, and Ka3 = 7.5 x10-3 , 6.2 x 10-8 , and 4.8 x 10-13)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT