Question

In: Chemistry

Consider the following reaction with an equilibrium constant of 5.10 at 527oC. CO(g) + H2O(g) ⇌...

Consider the following reaction with an equilibrium constant of 5.10 at 527oC. CO(g) + H2O(g) ⇌ H2(g) + CO2(g) If [CO] = 0.150 M, [H2O] = 0.250 M, [H2] = 0.420 M, and [CO2] = 0.370 M, calculate Q. ?

Consider the following reaction: 2SO2(g) + O2(g) ⇌ 2SO3(g)

Which of the following would not result in a shift towards an increase in production of SO3?pick the correct answer?

a)Increase in volume

b)Decrease in volume

c)Increase in the amount of SO2

d)Decrease in the amount of SO3

Solutions

Expert Solution

given K = 5.10 at 527 oC.

                            CO(g)    +    H2O(g)       H2(g)    +    CO2(g)

moles             0.150              0.250               0.420          0.370

Q is a reaction quotient which is the relative ratio of products to reactants at a given instant. Using either the initial concentrations or initial activities of all the components of the reaction.

Q =   [H2][CO2] / [CO][H2O]

   =   [0.420][.0370] / [0.150][0.250]

=   4.144

i.e. Q is less than K.

Q<K

this means there are more reactants than products, as a result few of rectants converted into product, making reaction shift towards right.

             2SO2(g) + O2(g) ⇌ 2SO3(g)

if shift towards increase in the production of SO3, then it will increase in the product that mean Q>K .

so to re-establish equilibrium, the reaction will progress to the left, towards the reactants,so

  1. increase the amount of SO2
  2. Decrease in the amount of SO3
  3. Increase in volume       occurs but Decrease in volume never occurs.

so option b)Decrease in volume is correct answer.


Related Solutions

PS8.2. The equilibrium constant, KP, for the reaction CO2(g) + H2(g) H2O(g) + CO(g) is 0.138....
PS8.2. The equilibrium constant, KP, for the reaction CO2(g) + H2(g) H2O(g) + CO(g) is 0.138. Calculate the partial pressure of all species at equilibrium for each of the following original mixtures: a) 1.36 atm of CO2 and 1.36 atm of H2. b) 0.87 atm of CO2, 0.87 atm of H2 and 0.87 atm of H2O(g). c) 0.64 atm of H2O and 0.64 atm of CO.
The equilibrium constant, Kc , for the following reaction is 5.10×10-6 at 548 K. NH4Cl(s) NH3(g)...
The equilibrium constant, Kc , for the following reaction is 5.10×10-6 at 548 K. NH4Cl(s) NH3(g) + HCl(g) If an equilibrium mixture of the three compounds in a 6.76 L container at 548 K contains 3.14 mol of NH4Cl(s) and 0.452 mol of NH3, the number of moles of HCl present is _________moles.
Consider the following reaction: CO (g) + H2O (g) ⇌ CO2 (g) + H2(g) If you...
Consider the following reaction: CO (g) + H2O (g) ⇌ CO2 (g) + H2(g) If you start with a mixture containing 1.00 mol of CO and 1.00 mol of H2O, calculate the number of moles of each component in the mixture when equilibrium is reached at 1000 °C. The mixture contains 0.43 mol H2? nCO = nH2O = nCO2 = How do I work this out?
23.Consider the following equilibrium process at 686°C: CO2(g) + H2(g) ⇌ CO(g) + H2O(g) The equilibrium...
23.Consider the following equilibrium process at 686°C: CO2(g) + H2(g) ⇌ CO(g) + H2O(g) The equilibrium concentrations of the reacting species are [CO] = 0.0580 M, [H2] = 0.0430 M, [CO2] = 0.0900 M, and [H2O] = 0.0420 M. (a) Calculate Kc for the reaction at 686°C. ________ (b) If we add CO2 to increase its concentration to 0.460 mol / L, what will the concentrations of all the gases be when equilibrium is reestablished? CO2: M H2: M CO:...
Calculate the equilibrium composition for the reaction Cgraphite + H2O(g) _<->CO(g) + H2(g) at T =...
Calculate the equilibrium composition for the reaction Cgraphite + H2O(g) _<->CO(g) + H2(g) at T = 298 K, 500 K, 1000 K, and 2000 K and a pressure of 1 bar. For the initial number of moles, use 1 mole of graphite, 3 moles of H2O(g), and no CO or H2.
The equilibrium constant, Kp, for the following reaction is 1.57 at 600 K: CO(g) + Cl2(g)...
The equilibrium constant, Kp, for the following reaction is 1.57 at 600 K: CO(g) + Cl2(g) COCl2(g) Calculate the equilibrium partial pressures of all species when CO and Cl2, each at an intitial partial pressure of 1.65 atm, are introduced into an evacuated vessel at 600 K. PCO = ______ atm PCl2= _______ atm PCOCl2 = _______ atm
The equilibrium constant, Kc, for the following reaction is 77.5 at 600 K. CO(g) + Cl2(g)...
The equilibrium constant, Kc, for the following reaction is 77.5 at 600 K. CO(g) + Cl2(g) COCl2(g) Calculate the equilibrium concentrations of reactant and products when 0.576 moles of CO and 0.576 moles of Cl2 are introduced into a 1.00 L vessel at 600 K. [CO] = M [Cl2] = M [COCl2] = M
At 100.0 C, the equilibrium constant for the reaction: CO (g) + Cl2 (g) <--> COCl2...
At 100.0 C, the equilibrium constant for the reaction: CO (g) + Cl2 (g) <--> COCl2 (g) has a value of 4.6 x 109. If 0.40 mol of COCl2 is placed into a 10.0 L flask at 100.0 C, what will be the equilibrium concentration of all species? (A simplifying approximation that will make the solution of the resulting equation easier is to note that x is much less than 0.040mol/L. This means that 0.040 -x is approximately 0.040.)
Consider the reaction: NO2 (g) + CO (g) ---> CO2 (g) + NO (g) The equilibrium...
Consider the reaction: NO2 (g) + CO (g) ---> CO2 (g) + NO (g) The equilibrium constant is at 701 K and 895 K are 2.57 and 567 L mol-1 s-1 so, A. Find the reaction order B. Energy of Activation C. Use part b to find the reaction rate constant at 200 C
Consider the reaction: CO(g) + H2O(g)<------> CO(g) + H2(g)   and K = 0.118 at 4000 K....
Consider the reaction: CO(g) + H2O(g)<------> CO(g) + H2(g)   and K = 0.118 at 4000 K. A reaction mixture initially contains a CO partial pressure of 1344 mbar and a H2O partial pressure of 1766 mbar at 4000K. Calculate the equilibrium partial pressures of each of the products.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT