Question

In: Statistics and Probability

1. Explain Type I and Type II errors. Which one is not controllable by the experimenter?

1. Explain Type I and Type II errors. Which one is not controllable by the experimenter?

Solutions

Expert Solution

Type I Error

A Type I error is often referred to as a “false positive" and is the incorrect rejection of the true null hypothesis in favor of the alternative.

In the example above, the null hypothesis refers to the natural state of things or the absence of the tested effect or phenomenon, i.e. stating that the patient is HIV negative. The alternative hypothesisstates that the patient is HIV positive. Many medical tests will have the disease they are testing for as the alternative hypothesis and the lack of that disease as the null hypothesis.

A Type I error would thus occur when the patient doesn’t have the virus but the test shows that they do. In other words, the test incorrectly rejects the true null hypothesis that the patient is HIV negative.

Type II Error

A Type II error is the inverse of a Type I error and is the false acceptance of a null hypothesis that is not actually true, i.e. a false negative. A Type II error would entail the test telling the patient they are free of HIV when they are not.

Considering this HIV example, which error type do you think is more acceptable? In other words, would you rather have a test that was more prone to Type I or Type II error? With HIV, it’s likely that the momentary stress of a false positive is better than feeling relieved at a false negative and then failing to take steps to treat the disease. Pregnancy tests, blood tests and any diagnostic tool that has serious consequences for the health of a patient are usually overly sensitive for this reason – it is much better for them to err on the side of a false positive.

But in most fields of science, Type II errors are seen as less serious than Type I errors. With the Type II error, a chance to reject the null hypothesis was lost, and no conclusion is inferred from a non-rejected null. But the Type I error is more serious, because you have wrongly rejected the null hypothesis and ultimately made a claim that is not true. In science, finding a phenomenon where there is none is more egregious than failing to find a phenomenon where there is. Therefore in most research designs, effort is made to error on the side of a false negative.

Type I error will not be controlled by the experimentor. Therefore it is called as level of significance and the experimentor fixes this value for some constant and try to reduce type II error.


Related Solutions

Explain what Type I and Type II errors are.
Explain what Type I and Type II errors are.
Type I and Type II Errors . Please discuss Type I and Type II errors. What...
Type I and Type II Errors . Please discuss Type I and Type II errors. What are they? Discuss their relationship with hypothesis testing. Answer all parts of question!!! Do not plagiarize!! Write out the answer on here, don't post a picture of it! Answer must be long!
Type I and II Errors
A manufacturer of 40-amp fuses wants to make sure that the mean amperage at which its fuses burn out is in fact 40. If the mean amperage is lower than 40, customerswill complain because the fuses require replacement too often. If higher, the manufacturer might be liable for damage. To verify the amperage of the fuses, a sample offuses is to be selected and inspected. If a hypothesis test were to be performed on the resulting data, what null and...
what is meant by Type I and Type II errors. Why are these important? Name one...
what is meant by Type I and Type II errors. Why are these important? Name one thing that can be done to improve internal validity of a study.
Type I and Type II errors Statistically speaking, we are generally agnostic to which is a...
Type I and Type II errors Statistically speaking, we are generally agnostic to which is a bigger problem, type I (false positive) errors or type II (false negative) errors. However, in certain circumstances it may be important to try and put more emphasis on avoiding one or the other. Can you think of an example of where you may want to try harder to avoid one type or another? Can you think of a policy; political, economic, social, or otherwise,...
Explain Type I and Type II errors in detail ( with example of your choice). Define...
Explain Type I and Type II errors in detail ( with example of your choice). Define level of significance and p Values. Interpret P-value of 0.023 in Hypothesis testing in general.
Q24 Describe what is meant by Type I and Type II errors and explain how these...
Q24 Describe what is meant by Type I and Type II errors and explain how these can be reduced in hypothesis testing. [4 Marks] DO NOT WRITE THE ANSWER - USE WORD FORMAT. NO PLAGIARISM IN THE ANSWER PLEASE.
8) Errors: Type I and Type II are errors that are possible even when a hypothesis...
8) Errors: Type I and Type II are errors that are possible even when a hypothesis test is done correctly. A hypothesis test is based on probabilities (p-values) This means there is always a probability of drawing the wrong conclusion even when done correctly. Please review the following: a.) What are type I and type II errors? b.) Be able to discuss what a type I or type II error is in a given scenario c.) What is the relationship...
• What is the level of significance? • What are Type I and Type II errors?...
• What is the level of significance? • What are Type I and Type II errors? • Interpreting and determining p-values • What is the relationship between sample size and power? • Understand the difference between a p-value and a confidence interval—strengths and weaknesses
A) Hypothesis Testing - Type I and Type II errors: You test the claim that the...
A) Hypothesis Testing - Type I and Type II errors: You test the claim that the mean gas mileage of all cars of a certain make is less than 29 miles per gallon (mpg). You perform this test at the 0.10 significance level. What is the probability of a Type I error for this test? B)Sleep: Assume the general population gets an average of 7 hours of sleep per night. You randomly select 40 college students and survey them on...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT