Question

In: Physics

Show that the charges placed on a system of fixed conductors are distributed on the conductors'...

Show that the charges placed on a system of fixed conductors are distributed on the conductors' surfaces in such a way that the electrostatic energy of the resulting field is a minimum (Thomson theorem)

Solutions

Expert Solution


Related Solutions

In a rectangular coordinate system, point charges of 2muC, 4muC, 5muC and -4muC are placed at...
In a rectangular coordinate system, point charges of 2muC, 4muC, 5muC and -4muC are placed at the points p1(3,4) meters, P2 (0,4) meters, P3(1,3) meters and p4(5,2) meters,respectively. Calculate the amount of work required to transfer a charge of 15muC from the origin to the point (6,2) meters
Two charges are placed on the x axis. One of the charges (q1 = +8.59C) is...
Two charges are placed on the x axis. One of the charges (q1 = +8.59C) is at x1 = +3.00 cm and the other (q2 = -24.4C) is at x2 = +9.00 cm. Find the net electric field (magnitude and direction given as a plus or minus sign) at (a) x = 0 cm and (b) x = +6.00 cm. please help
Two charges are placed on the x axis. One of the charges (q1 = +7.73C) is...
Two charges are placed on the x axis. One of the charges (q1 = +7.73C) is at x1 = +3.00 cm and the other (q2 = -23.7C) is at x2 = +9.00 cm. Find the net electric field (magnitude and direction given as a plus or minus sign) at (a) x = 0 cm and (b) x = +6.00 cm.
Two charges are placed on the x axis. One of the charges (q1 = +6.23C) is...
Two charges are placed on the x axis. One of the charges (q1 = +6.23C) is at x1 = +3.00 cm and the other (q2 = -29.4C) is at x2 = +9.00 cm. Find the net electric field (magnitude and direction given as a plus or minus sign) at (a) x = 0 cm and (b) x = +6.00 cm.
(a)Two charges are placed on the x-axis: one is placed at x = 3 m and...
(a)Two charges are placed on the x-axis: one is placed at x = 3 m and the other is at x = -3 m. The magnitude of both charges is 9.7
Three point charges are placed on the x-axis. A charge of +2.0 μC is placed at...
Three point charges are placed on the x-axis. A charge of +2.0 μC is placed at the origin, -2.0 μC to the right at x = 50 cm, and +4.0 μC at the 100 cm mark. What are the magnitude and direction of the electrostatic force which acts on the charge at the origin?
Three point charges are placed at the corners of a right-angle triangle, as shown in the...
Three point charges are placed at the corners of a right-angle triangle, as shown in the figure. The masses, charges and coordinates of the three objects are given as follows: Mass (g): Charge (μC): Coordinate (mm): ?1 = 2.30 ?1 = −1.25 ?1 = (0; 6.00) ?2 = 0.15 ?2 = +0.55 ?2 = (0; 0) ?3 = 1.50 ?3 = −2.05 ?3 = (4.00; 0) (a) Determine the coordinate of the centre of mass of the system. (b) Calculate...
Charges are placed on the x-axis as follows: q1 = + 5 μC at x =...
Charges are placed on the x-axis as follows: q1 = + 5 μC at x = -5 m q2 = − 3 μC at x = -1 m q3 = − 2 μ C at x = +2 m q4 = + 9 μ C at x = +3 m What is the net force on q2? Answer in units of milli-Newtons rounded to 3 significant figures.
Three charges, + 34 uC, - 34 uC and + 34 uC are placed at A...
Three charges, + 34 uC, - 34 uC and + 34 uC are placed at A (0,5cm), B (5cm,0), C(-5cm,0). Calculate the potential energy of the whole system of charges.
Two charges are placed along the x axis such that charge A is at -3 m,...
Two charges are placed along the x axis such that charge A is at -3 m, and has a charge of 2.5e-06 C. Charge B is at 2.2 m, and has a charge of -2.5e-06 C. What is the x component of the force (in Newtons) felt by charge A due to charge B? What is the x component of the force (in Newtons) felt by charge B due to charge A? Suppose a third charge were to be placed...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT