In: Chemistry
We will abbreviate malonic acid, CH2(CO2H)2, as H2M. Find the pH and concentrations of H2M, HM+, and M2+ in (a) 0.100 M H2M; (b) 0.100 M NaHM; (c) 0.100 M Na2M.
Ka1 = 1.48 x 10-3 ; Ka2 = 2.04 x 10-6 2.83, 5.69
a. 0.1 M H2M
Ka1 = [H+][HM-]/[H2M]
1.48 x 10^-3 = x^2/0.1
x = [H+] = 0.012 M
pH = 1.91
[H2M] = 0.1 - 0.012 = 0.088 M
Ka2 = [H+][M2-]/[HM-]
2.04 x 10-6 = x2/0.088
x = [M2-] = 4.23 x 10-4 M
[HM-] = 0.087 M
b. 0.1 M NaHM
Kb = Kw/Ka1 = [H2M][OH-]/[HM-]
1 x 10-14/1.48 x 10-3 = x2/0.1
x = [OH-] = 8.22 x 10-7 M
[H+] = 1 x 10-14/8.22 x 10^-7 = 1.21 x 10-8 M
pH = -log[H+] = 7.91
[H2M] = 1.21 x 10-8 M
Ka2 = [H+][M2-]/[HM-]
2.04 x 10-6 = x2/0.1
x = [M2-] = 4.51 x 10-4 M
[HM-] = 0.099 M
c. 0.1 M Na2M
Kb2 = Kw/Ka2 = [HM-][OH-]/[M2-]
1 x 10-14/2.04 x 10-6 = x2/0.1
x = [OH-] = 2.21 x 10-5 M
[H+] = 1 x 10-14/2.21 x 10-5 = 4.51 x 10-10 M
pH = -log[H+] = 9.34
[M2-] = 0.1 M
Kb1 = 1 x 10-14/1.48 x 10-3 = x2/0.1
x = [H2M] = 8.22 x 10-7 M
[HM-] = 0.1 M
Ka1 = 1.48 x 10-3 ; Ka2 = 2.04 x 10-6 2.83, 5.69
a. 0.1 M H2M
Ka1 = [H+][HM-]/[H2M]
1.48 x 10^-3 = x^2/0.1
x = [H+] = 0.012 M
pH = 1.91