In: Finance
You decide to invest in a portfolio consisting of 17 percent
Stock X, 38 percent Stock Y, and the remainder in Stock Z. Based on
the following information, what is the standard deviation of your
portfolio?
| State of Economy | Probability of State | Return if State Occurs | ||||||||||
| of Economy | ||||||||||||
| Stock X | Stock Y | Stock Z | ||||||||||
| Normal | .75 | 9.20% | 2.60% | 11.60% | ||||||||
| Boom | .25 | 16.50% | 24.50% | 16.00% | ||||||||
| Stock X | |||||
| Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (A)^2* probability |
| Normal | 0.75 | 9.2 | 6.9 | -1.825 | 0.000249797 |
| Boom | 0.25 | 16.5 | 4.125 | 5.475 | 0.000749391 |
| Expected return %= | sum of weighted return = | 11.03 | Sum=Variance Stock X= | 0.001 | |
| Standard deviation of Stock X% | =(Variance)^(1/2) | 3.16 | |||
| Stock Y | |||||
| Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (B)^2* probability |
| Normal | 0.75 | 2.6 | 1.95 | -5.475 | 0.002248172 |
| Boom | 0.25 | 24.5 | 6.125 | 16.425 | 0.006744516 |
| Expected return %= | sum of weighted return = | 8.08 | Sum=Variance Stock Y= | 0.00899 | |
| Standard deviation of Stock Y% | =(Variance)^(1/2) | 9.48 | |||
| Stock Z | |||||
| Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (C)^2* probability |
| Normal | 0.75 | 11.6 | 8.7 | -1.1 | 0.00009075 |
| Boom | 0.25 | 16 | 4 | 3.3 | 0.00027225 |
| Expected return %= | sum of weighted return = | 12.7 | Sum=Variance Stock Z= | 0.00036 | |
| Standard deviation of Stock Z% | =(Variance)^(1/2) | 1.91 | |||
| Covariance Stock X Stock Y: | |||||
| Scenario | Probability | Actual return% -expected return% for A(A) | Actual return% -expected return% For B(B) | (A)*(B)*probability | |
| Normal | 0.75 | -1.8250 | -5.475 | 0.000749391 | |
| Boom | 0.25 | 5.475 | 16.425 | 0.002248172 | |
| Covariance=sum= | 0.002997563 | ||||
| Correlation A&B= | Covariance/(std devA*std devB)= | 1 | |||
| Covariance Stock X Stock Z: | |||||
| Scenario | Probability | Actual return% -expected return% for A(A) | Actual return% -expected return% for C(C) | (A)*(C)*probability | |
| Normal | 0.75 | -1.825 | -1.1 | 0.000150563 | |
| Boom | 0.25 | 5.475 | 3.3 | 0.000451688 | |
| Covariance=sum= | 0.00060225 | ||||
| Correlation A&C= | Covariance/(std devA*std devC)= | 1 | |||
| Covariance Stock Y Stock Z: | |||||
| Scenario | Probability | Actual return% -expected return% For B(B) | Actual return% -expected return% for C(C) | (B)*(C)*probability | |
| Normal | 0.75 | -5.475 | -1.1 | 0.000451688 | |
| Boom | 0.25 | 16.425 | 3.3 | 0.001355063 | |
| Covariance=sum= | 0.00180675 | ||||
| Correlation B&C= | Covariance/(std devB*std devC)= | 1 | |||
| Variance | =w2A*σ2(RA) + w2B*σ2(RB) + w2C*σ2(RC)+ 2*(wA)*(wB)*Cor(RA, RB)*σ(RA)*σ(RB) + 2*(wA)*(wC)*Cor(RA, RC)*σ(RA)*σ(RC) + 2*(wC)*(wB)*Cor(RC, RB)*σ(RC)*σ(RB) | ||||
| Variance | =0.17^2*0.03161^2+0.38^2*0.09483^2+0.45^2*0.01905^2+2*(0.17*0.38*0.03161*0.09483*1+0.38*0.45*0.09483*0.01905*1+0.17*0.45*1*0.03161*0.01905) | ||||
| Variance | 0.002498 | ||||
| Standard deviation= | (variance)^0.5 | ||||
| Standard deviation= | 5.00% | ||||